Periodic traveling waves in Fermi–Pasta–Ulam type systems with nonlocal interaction on 2d-lattice

Q3 Mathematics
S. M. Bak, G. Kovtonyuk
{"title":"Periodic traveling waves in Fermi–Pasta–Ulam type systems with nonlocal interaction on 2d-lattice","authors":"S. M. Bak, G. Kovtonyuk","doi":"10.30970/ms.60.2.180-190","DOIUrl":null,"url":null,"abstract":"The paper deals with the Fermi--Pasta--Ulam type systems that describe an infinite systems of nonlinearly  coupled particles with nonlocal interaction on a two dimensional lattice. It is assumed that each particle interacts nonlinearly with several neighbors horizontally and vertically on both sides. The main result concerns the existence of traveling waves solutions with periodic relative displacement profiles. We obtain sufficient conditions for the existence of such solutions with the aid of critical point method and a suitable version of the Mountain Pass Theorem for functionals satisfying the Cerami condition instead of the Palais--Smale condition. We prove that under natural assumptions there exist monotone traveling waves.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":"10 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.60.2.180-190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The paper deals with the Fermi--Pasta--Ulam type systems that describe an infinite systems of nonlinearly  coupled particles with nonlocal interaction on a two dimensional lattice. It is assumed that each particle interacts nonlinearly with several neighbors horizontally and vertically on both sides. The main result concerns the existence of traveling waves solutions with periodic relative displacement profiles. We obtain sufficient conditions for the existence of such solutions with the aid of critical point method and a suitable version of the Mountain Pass Theorem for functionals satisfying the Cerami condition instead of the Palais--Smale condition. We prove that under natural assumptions there exist monotone traveling waves.
二维晶格上具有非局部相互作用的费米-帕斯塔-乌兰型系统中的周期性行波
论文讨论了费米--帕斯塔--乌拉姆(Fermi--Pasta--Ulam)型系统,该系统描述了在二维晶格上具有非局部相互作用的非线性耦合粒子的无限系统。假设每个粒子在水平和垂直方向上与两侧的多个相邻粒子发生非线性相互作用。主要结果涉及具有周期性相对位移剖面的行波解的存在。我们借助临界点方法和满足 Cerami 条件(而非 Palais--Smale 条件)的函数的适当版本山口定理,获得了此类解存在的充分条件。我们证明了在自然假设条件下存在单调行波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信