{"title":"A Passenger Flow Prediction Method Using SAE-GCN-BiLSTM for Urban Rail Transit","authors":"Fan Liu","doi":"10.4018/ijsir.335100","DOIUrl":null,"url":null,"abstract":"To address the problems of existing passenger flow prediction methods such as low accuracy, inadequate learning of spatial features of station topology, and inability to apply to large networks, a SAE-GCN-BiLSTM-based passenger flow forecasting method for urban rail transit is proposed. First, the external features are extracted layer by layer using stacked autoencoder (SAE). Then, graph convolutional network (GCN) is used to capture the spatial features of station topology, and bi-directional long and short-term memory network (BiLSTM) is used to extract the bi-directional temporal features, realizing the extraction of the spatio-temporal features. Finally, external features and spatio-temporal features are fused for accurate prediction of urban rail transit passenger flow. The experimental results show that the proposed method is higher than several other advanced models in the evaluation indexes under different granularities, indicating that the model effectively develops the accuracy and robustness of urban rail transit passenger flow prediction.","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":"79 ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Swarm Intelligence Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsir.335100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
To address the problems of existing passenger flow prediction methods such as low accuracy, inadequate learning of spatial features of station topology, and inability to apply to large networks, a SAE-GCN-BiLSTM-based passenger flow forecasting method for urban rail transit is proposed. First, the external features are extracted layer by layer using stacked autoencoder (SAE). Then, graph convolutional network (GCN) is used to capture the spatial features of station topology, and bi-directional long and short-term memory network (BiLSTM) is used to extract the bi-directional temporal features, realizing the extraction of the spatio-temporal features. Finally, external features and spatio-temporal features are fused for accurate prediction of urban rail transit passenger flow. The experimental results show that the proposed method is higher than several other advanced models in the evaluation indexes under different granularities, indicating that the model effectively develops the accuracy and robustness of urban rail transit passenger flow prediction.
期刊介绍:
The mission of the International Journal of Swarm Intelligence Research (IJSIR) is to become a leading international and well-referred journal in swarm intelligence, nature-inspired optimization algorithms, and their applications. This journal publishes original and previously unpublished articles including research papers, survey papers, and application papers, to serve as a platform for facilitating and enhancing the information shared among researchers in swarm intelligence research areas ranging from algorithm developments to real-world applications.