Logarithmic coefficients for a class of analytic functions defined by subordination

∗. AndreeaNISTOR-S¸ERBAN, Dorina R ˘ aducanu
{"title":"Logarithmic coefficients for a class of analytic functions defined by subordination","authors":"∗. AndreeaNISTOR-S¸ERBAN, Dorina R ˘ aducanu","doi":"10.31926/but.mif.2023.3.65.2.11","DOIUrl":null,"url":null,"abstract":"In this paper we consider a class of functions Mα(φ) defined by subordination, consisting of functions f ∈ A satisfying the condition (1 −α) zf′(z)/ f(z) + α (1 + zf′′(z)/ f′(z) )≺ φ(z), z ∈ U. In the study of univalent functions, estimates on the Taylor coefficients are usually given. Another significant problem deals with the estimates of logarithmic coefficients. For the class S of univalent functions no sharp bounds for the modulus of the individual logarithmic coefficients are known if n ≥ 3. For different subclasses of S the results are not better and in most cases only th e first three initial coefficients of log f(z)/z are considered. For the class Mα(φ) we obtain upper bounds for the logarithmic coefficients γn, n ∈ {1, 2, 3} and also for Γn, n ∈ {1, 2, 3}, the logarithmic coefficients of the inverse of Mα(φ). Connections with previous known results are pointed out.","PeriodicalId":505295,"journal":{"name":"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science","volume":"172 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2023.3.65.2.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider a class of functions Mα(φ) defined by subordination, consisting of functions f ∈ A satisfying the condition (1 −α) zf′(z)/ f(z) + α (1 + zf′′(z)/ f′(z) )≺ φ(z), z ∈ U. In the study of univalent functions, estimates on the Taylor coefficients are usually given. Another significant problem deals with the estimates of logarithmic coefficients. For the class S of univalent functions no sharp bounds for the modulus of the individual logarithmic coefficients are known if n ≥ 3. For different subclasses of S the results are not better and in most cases only th e first three initial coefficients of log f(z)/z are considered. For the class Mα(φ) we obtain upper bounds for the logarithmic coefficients γn, n ∈ {1, 2, 3} and also for Γn, n ∈ {1, 2, 3}, the logarithmic coefficients of the inverse of Mα(φ). Connections with previous known results are pointed out.
从属定义的一类解析函数的对数系数
在本文中,我们考虑一类由从属定义的函数 Mα(φ),它由满足条件 (1 -α) zf′(z)/ f(z) + α (1 + zf′(z)/ f′(z) )≺ φ(z)、z∈ U 的函数 f∈ A 组成。在研究一元函数时,通常会给出泰勒系数的估计值。另一个重要问题涉及对数系数的估计。对于单值函数 S 类,如果 n ≥ 3,单个对数系数的模数没有明确的界限。对于 S 的不同子类,结果也不尽相同,大多数情况下只考虑 log f(z)/z 的前三个初始系数。对于 Mα(φ)类,我们得到了对数系数 γn, n∈ {1, 2, 3} 的上界,也得到了 Mα(φ)逆的对数系数 Γn, n∈ {1, 2, 3} 的上界。指出了与之前已知结果的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信