On 7-Dimensional Nilpotent Leibniz Algebras With 1-Dimensional Leib Ideal

İsmail Demi̇r
{"title":"On 7-Dimensional Nilpotent Leibniz Algebras With 1-Dimensional Leib Ideal","authors":"İsmail Demi̇r","doi":"10.18466/cbayarfbe.1339702","DOIUrl":null,"url":null,"abstract":"Leibniz algebras are nonanticommutative versions of Lie algebras. Lie algebras have many applications in many scientific areas as well as mathematical areas. Scientists from different disciplines have used specific examples of Lie algebras according to their needs. However, we mathematicians are more interested in generality than in obtaining a few examples. The classification problem for Leibniz algebras has an intrinsically wild nature as in Lie algebras. In this article, the approach of congruence classes of bilinear forms is extended to classify certain subclasses of seven-dimensional nilpotent Leibniz algebras over complex numbers. Certain cases of seven-dimensional complex nilpotent Leibniz algebras of those with one-dimensional Leib ideal and derived algebra of codimension two are classified.","PeriodicalId":9653,"journal":{"name":"Celal Bayar Üniversitesi Fen Bilimleri Dergisi","volume":"69 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Celal Bayar Üniversitesi Fen Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18466/cbayarfbe.1339702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Leibniz algebras are nonanticommutative versions of Lie algebras. Lie algebras have many applications in many scientific areas as well as mathematical areas. Scientists from different disciplines have used specific examples of Lie algebras according to their needs. However, we mathematicians are more interested in generality than in obtaining a few examples. The classification problem for Leibniz algebras has an intrinsically wild nature as in Lie algebras. In this article, the approach of congruence classes of bilinear forms is extended to classify certain subclasses of seven-dimensional nilpotent Leibniz algebras over complex numbers. Certain cases of seven-dimensional complex nilpotent Leibniz algebras of those with one-dimensional Leib ideal and derived algebra of codimension two are classified.
论具有一维莱布理想的七维无势莱布尼兹代数
莱布尼兹代数是非反交换版本的李代数。李代数在许多科学领域和数学领域都有很多应用。不同学科的科学家根据自己的需要,使用了特定的李代数例子。然而,我们数学家更感兴趣的是通用性,而不是获得几个例子。莱布尼兹代数的分类问题与李代数一样,具有内在的野性。本文将双线性形式的全等类方法扩展到复数上的七维零能莱布尼兹代数的某些子类的分类。本文对具有一维莱布理想和二维衍生代数的七维复数零势莱布尼兹代数的某些情况进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信