Daniele Corti, Guillaume Delay, Miguel A. Fernández, Fabien Vergnet, Marina Vidrascu
{"title":"Low-order fictitious domain method with enhanced mass conservation for an interface Stokes problem","authors":"Daniele Corti, Guillaume Delay, Miguel A. Fernández, Fabien Vergnet, Marina Vidrascu","doi":"10.1051/m2an/2023103","DOIUrl":null,"url":null,"abstract":"One of the main difficulties that has to be faced with fictitious domain approximation of incompressible flows with immersed interfaces is related to the potential lack of mass conservation across the interface. In this paper, we propose and analyze a low order fictitious domain stabilized finite element method which mitigates this issue with the addition of a single velocity constraint. We provide a complete a priori numerical analysis of the method under minimal regularity assumptions. A comprehensive numerical study illustrates the capabilities of the proposed method, including comparisons with alternative fitted and unfitted mesh methods.","PeriodicalId":505020,"journal":{"name":"ESAIM: Mathematical Modelling and Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM: Mathematical Modelling and Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/m2an/2023103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
One of the main difficulties that has to be faced with fictitious domain approximation of incompressible flows with immersed interfaces is related to the potential lack of mass conservation across the interface. In this paper, we propose and analyze a low order fictitious domain stabilized finite element method which mitigates this issue with the addition of a single velocity constraint. We provide a complete a priori numerical analysis of the method under minimal regularity assumptions. A comprehensive numerical study illustrates the capabilities of the proposed method, including comparisons with alternative fitted and unfitted mesh methods.