Extension of the Dip-test Repertoire - Efficient and Differentiable p-value Calculation for Clustering

SDM Pub Date : 2023-12-19 DOI:10.1137/1.9781611977653.ch13
L. G. M. Bauer, Collin Leiber, Christian Böhm, Claudia Plant
{"title":"Extension of the Dip-test Repertoire - Efficient and Differentiable p-value Calculation for Clustering","authors":"L. G. M. Bauer, Collin Leiber, Christian Böhm, Claudia Plant","doi":"10.1137/1.9781611977653.ch13","DOIUrl":null,"url":null,"abstract":"Over the last decade, the Dip-test of unimodality has gained increasing interest in the data mining community as it is a parameter-free statistical test that reliably rates the modality in one-dimensional samples. It returns a so called Dip-value and a corresponding probability for the sample's unimodality (Dip-p-value). These two values share a sigmoidal relationship. However, the specific transformation is dependent on the sample size. Many Dip-based clustering algorithms use bootstrapped look-up tables translating Dip- to Dip-p-values for a certain limited amount of sample sizes. We propose a specifically designed sigmoid function as a substitute for these state-of-the-art look-up tables. This accelerates computation and provides an approximation of the Dip- to Dip-p-value transformation for every single sample size. Further, it is differentiable and can therefore easily be integrated in learning schemes using gradient descent. We showcase this by exploiting our function in a novel subspace clustering algorithm called Dip'n'Sub. We highlight in extensive experiments the various benefits of our proposal.","PeriodicalId":508514,"journal":{"name":"SDM","volume":"13 5","pages":"109-117"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SDM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611977653.ch13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the last decade, the Dip-test of unimodality has gained increasing interest in the data mining community as it is a parameter-free statistical test that reliably rates the modality in one-dimensional samples. It returns a so called Dip-value and a corresponding probability for the sample's unimodality (Dip-p-value). These two values share a sigmoidal relationship. However, the specific transformation is dependent on the sample size. Many Dip-based clustering algorithms use bootstrapped look-up tables translating Dip- to Dip-p-values for a certain limited amount of sample sizes. We propose a specifically designed sigmoid function as a substitute for these state-of-the-art look-up tables. This accelerates computation and provides an approximation of the Dip- to Dip-p-value transformation for every single sample size. Further, it is differentiable and can therefore easily be integrated in learning schemes using gradient descent. We showcase this by exploiting our function in a novel subspace clustering algorithm called Dip'n'Sub. We highlight in extensive experiments the various benefits of our proposal.
扩展《浸渍测试曲目》--高效、可区分的聚类 p 值计算
过去十年间,数据挖掘界对单模态的 Dip 检验越来越感兴趣,因为它是一种无参数统计检验,能可靠地评定一维样本的模态。它会返回一个所谓的 Dip 值和样本单模态性的相应概率(Dip-p-值)。这两个值之间存在正余弦关系。不过,具体的变换取决于样本大小。许多基于 Dip 的聚类算法使用引导查找表,在一定的样本量限制下将 Dip- 转换为 Dip-p 值。我们提出了一个专门设计的 sigmoid 函数来替代这些最先进的查找表。这不仅加快了计算速度,还为每一个样本量提供了从 Dip 值到 Dip-p 值转换的近似值。此外,它还具有可微分性,因此可以轻松集成到使用梯度下降的学习方案中。我们将在一种名为 "Dip'n'Sub "的新型子空间聚类算法中利用我们的函数来展示这一点。我们在大量实验中强调了我们建议的各种优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SDM
SDM
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信