A Data-Driven Study of the Drivers of Stratospheric Circulation via Reduced Order Modeling and Data Assimilation

Julie Sherman, Christian Sampson, Emmanuel Fleurantin, Zhimin Wu, Christopher K. R. T. Jones
{"title":"A Data-Driven Study of the Drivers of Stratospheric Circulation via Reduced Order Modeling and Data Assimilation","authors":"Julie Sherman, Christian Sampson, Emmanuel Fleurantin, Zhimin Wu, Christopher K. R. T. Jones","doi":"10.3390/meteorology3010001","DOIUrl":null,"url":null,"abstract":"Stratospheric dynamics are strongly affected by the absorption/emission of radiation in the Earth’s atmosphere and Rossby waves that propagate upward from the troposphere, perturbing the zonal flow. Reduced order models of stratospheric wave–zonal interactions, which parameterize these effects, have been used to study interannual variability in stratospheric zonal winds and sudden stratospheric warming (SSW) events. These models are most sensitive to two main parameters: Λ, forcing the mean radiative zonal wind gradient, and h, a perturbation parameter representing the effect of Rossby waves. We take one such reduced order model with 20 years of ECMWF atmospheric reanalysis data and estimate Λ and h using both a particle filter and an ensemble smoother to investigate if the highly-simplified model can accurately reproduce the averaged reanalysis data and which parameter properties may be required to do so. We find that by allowing additional complexity via an unparameterized Λ(t), the model output can closely match the reanalysis data while maintaining behavior consistent with the dynamical properties of the reduced-order model. Furthermore, our analysis shows physical signatures in the parameter estimates around known SSW events. This work provides a data-driven examination of these important parameters representing fundamental stratospheric processes through the lens and tractability of a reduced order model, shown to be physically representative of the relevant atmospheric dynamics.","PeriodicalId":506871,"journal":{"name":"Meteorology","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/meteorology3010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stratospheric dynamics are strongly affected by the absorption/emission of radiation in the Earth’s atmosphere and Rossby waves that propagate upward from the troposphere, perturbing the zonal flow. Reduced order models of stratospheric wave–zonal interactions, which parameterize these effects, have been used to study interannual variability in stratospheric zonal winds and sudden stratospheric warming (SSW) events. These models are most sensitive to two main parameters: Λ, forcing the mean radiative zonal wind gradient, and h, a perturbation parameter representing the effect of Rossby waves. We take one such reduced order model with 20 years of ECMWF atmospheric reanalysis data and estimate Λ and h using both a particle filter and an ensemble smoother to investigate if the highly-simplified model can accurately reproduce the averaged reanalysis data and which parameter properties may be required to do so. We find that by allowing additional complexity via an unparameterized Λ(t), the model output can closely match the reanalysis data while maintaining behavior consistent with the dynamical properties of the reduced-order model. Furthermore, our analysis shows physical signatures in the parameter estimates around known SSW events. This work provides a data-driven examination of these important parameters representing fundamental stratospheric processes through the lens and tractability of a reduced order model, shown to be physically representative of the relevant atmospheric dynamics.
通过降阶建模和数据同化对平流层环流驱动因素的数据驱动研究
平流层动力学受到地球大气中辐射的吸收/发射以及从对流层向上传播的罗斯比波的强烈影响,从而扰动了地带流。将这些影响参数化的平流层波-地带相互作用低阶模型已被用于研究平流层地带风的年际变化和平流层突然变暖(SSW)事件。这些模型对两个主要参数最为敏感:Λ(强制平均辐射带风梯度)和 h(代表罗斯比波效应的扰动参数)。我们利用 20 年的 ECMWF 大气再分析数据建立了这样一个简化模型,并使用粒子滤波器和集合平滑器估算Λ和 h,以研究高度简化的模型是否能准确再现平均再分析数据,以及这样做可能需要哪些参数特性。我们发现,通过未参数化的Λ(t)允许额外的复杂性,模型输出可以密切匹配再分析数据,同时保持与简化阶模型动力学特性一致的行为。此外,我们的分析还显示了已知 SSW 事件周围参数估计的物理特征。这项工作通过减阶模式的视角和可操作性,对这些代表平流层基本过程的重要参数进行了数据驱动的检验,结果表明减阶模式在物理上代表了相关的大气动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信