Periodic unfolding method for domains with very small inclusions

IF 0.8 4区 数学 Q2 MATHEMATICS
J. Avila, Bituin C. Cabarrubias
{"title":"Periodic unfolding method for domains with very small inclusions","authors":"J. Avila, Bituin C. Cabarrubias","doi":"10.58997/ejde.2023.85","DOIUrl":null,"url":null,"abstract":"This work creates a version of the periodic unfolding method suitable for domains with very small inclusions in \\(\\mathbb{R}^N\\) for \\(N\\geq 3\\). In the first part, we explore the properties of the associated operators. The second part involves the application of the method in obtaining the asymptotic behavior of a stationary heat dissipation problem depending on the parameter \\( \\gamma < 0\\). In particular, we consider the cases when \\(\\gamma \\in (-1,0)\\), \\( \\gamma < -1\\) and \\(\\gamma = -1\\). We also include here the corresponding corrector results for the solution of the problem, to complete the homogenization process. For more information see https://ejde.math.txstate.edu/Volumes/2023/85/abstr.html","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":"36 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.85","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work creates a version of the periodic unfolding method suitable for domains with very small inclusions in \(\mathbb{R}^N\) for \(N\geq 3\). In the first part, we explore the properties of the associated operators. The second part involves the application of the method in obtaining the asymptotic behavior of a stationary heat dissipation problem depending on the parameter \( \gamma < 0\). In particular, we consider the cases when \(\gamma \in (-1,0)\), \( \gamma < -1\) and \(\gamma = -1\). We also include here the corresponding corrector results for the solution of the problem, to complete the homogenization process. For more information see https://ejde.math.txstate.edu/Volumes/2023/85/abstr.html
极小夹杂物域的周期展开法
这项工作为 \(N\geq 3\) 的 \(\mathbb{R}^N\) 中具有非常小夹杂的域创建了一个周期性展开方法的版本。在第一部分,我们探讨了相关算子的性质。第二部分是应用该方法获得静态散热问题的渐近行为,这取决于参数 \( \gamma < 0\) 。特别是,我们考虑了(gamma在(-1,0))、(gamma <-1)和(gamma =-1)的情况。我们在这里还包含了问题求解的相应校正器结果,以完成同质化过程。更多信息请参见 https://ejde.math.txstate.edu/Volumes/2023/85/abstr.html
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信