Differential ultrasound diagnosis of benign and malignant ovarian tumors: diagnostic models, algorithms, stratification systems, consensuses (1990–2023).

M. N. Bulanov, M. A. Chekalova, M. V. Mazurkevich, N. N. Vetsheva
{"title":"Differential ultrasound diagnosis of benign and malignant ovarian tumors: diagnostic models, algorithms, stratification systems, consensuses (1990–2023).","authors":"M. N. Bulanov, M. A. Chekalova, M. V. Mazurkevich, N. N. Vetsheva","doi":"10.24835/1607-0771-2023-2-34-61","DOIUrl":null,"url":null,"abstract":"The review presents the most common diagnostic models, algorithms and stratification systems developed for the purpose of optimal differential diagnosis of benign and malignant ovarian tumors from 1990 to the present. Four variants of the RMI 1–4 malignancy risk index with their comparative characteristics are described. A proprietary comprehensive ultrasound scoring scale for ovarian tumors is described. Algorithms for the integrated use of echography and tumor markers (CA-125, HE4, ROMA), including the Risk Ovarian Cancer computer system, are presented. All existing IOTA diagnostic models are described: Simple IOTA rules, Simple IOTA rules with quantitative calculation of the risk of malignancy, Logistic regression analysis IOTA LR1 & LR2, Easy IOTA descriptors, IOTA ADNEX. The main algorithms for the integrated use of IOTA models are presented. The principles of using the diagnostic stratification systems GI-RADS and O-RADS are outlined. Clinical examples of the use of diagnostic models are given. The review concludes by presenting the ESGO/ISUOG/IOTA/ESGE consensus on the preoperative diagnosis of ovarian tumors.","PeriodicalId":506380,"journal":{"name":"Ultrasound & Functional Diagnostics","volume":"20 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasound & Functional Diagnostics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24835/1607-0771-2023-2-34-61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The review presents the most common diagnostic models, algorithms and stratification systems developed for the purpose of optimal differential diagnosis of benign and malignant ovarian tumors from 1990 to the present. Four variants of the RMI 1–4 malignancy risk index with their comparative characteristics are described. A proprietary comprehensive ultrasound scoring scale for ovarian tumors is described. Algorithms for the integrated use of echography and tumor markers (CA-125, HE4, ROMA), including the Risk Ovarian Cancer computer system, are presented. All existing IOTA diagnostic models are described: Simple IOTA rules, Simple IOTA rules with quantitative calculation of the risk of malignancy, Logistic regression analysis IOTA LR1 & LR2, Easy IOTA descriptors, IOTA ADNEX. The main algorithms for the integrated use of IOTA models are presented. The principles of using the diagnostic stratification systems GI-RADS and O-RADS are outlined. Clinical examples of the use of diagnostic models are given. The review concludes by presenting the ESGO/ISUOG/IOTA/ESGE consensus on the preoperative diagnosis of ovarian tumors.
良性和恶性卵巢肿瘤的超声鉴别诊断:诊断模型、算法、分层系统、共识(1990-2023 年)。
本综述介绍了 1990 年至今为优化卵巢良恶性肿瘤鉴别诊断而开发的最常见诊断模型、算法和分层系统。介绍了 RMI 1-4 恶性风险指数的四种变体及其比较特征。介绍了专有的卵巢肿瘤超声综合评分表。介绍了综合使用超声波和肿瘤标志物(CA-125、HE4、ROMA)的算法,包括卵巢癌风险计算机系统。介绍了所有现有的 IOTA 诊断模型:简单 IOTA 规则、定量计算恶性肿瘤风险的简单 IOTA 规则、逻辑回归分析 IOTA LR1 和 LR2、简易 IOTA 描述符、IOTA ADNEX。介绍了综合使用 IOTA 模型的主要算法。概述了 GI-RADS 和 O-RADS 诊断分层系统的使用原则。给出了使用诊断模型的临床实例。综述最后介绍了 ESGO/ISUOG/IOTA/ESGE 关于卵巢肿瘤术前诊断的共识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信