{"title":"Synthesis and Characterization of Cellulose Acetate Membrane from Corn (Zea mays) Husk as Lithium-Ion Battery Electrolyte Membrane","authors":"E. Dyartanti, Fairuz Yasmin Majid, Visista Mahisi Adriari, Diyan Wahyu Widodo, Sukma Budi Utomo Albuni","doi":"10.4028/p-7hdm9m","DOIUrl":null,"url":null,"abstract":"Rechargeable lithium-ion batteries (LIBs) have gained popularity and the attention of numerous researchers in recent times because of their benefits. The separator membrane is one of the most important parts of the LIB. Separator membranes are made of polymeric materials, one of which is cellulose acetate (CA). In this study, we synthesize CA from corn husk. There are 2 methodological ways in this study, namely the synthesis of CA which consists of delignification and acetylation, and fabrication of PVDF/ CA/ Nanoclay electrolyte membrane with variation of CA PVDF (0%:100, 10%: 90%, 20%: 80%, 30%: 70%, 50%: 50%). The synthesis of CA from corn husk exhibits XRD results which were comparable to the peak of commercial CA. Meanwhile, the PVDF/ CA-Nanoclay-based separator membrane with the composition of 50% PVDF and 50% CA had the best characterization results with an electrolyte uptake value of 139.649% and a porosity value of 79.11%. Based on the attained results, the CA extracted from corn husk in this study is applicable to use for the fabrication of electrolyte membrane.","PeriodicalId":18262,"journal":{"name":"Materials Science Forum","volume":"85 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-7hdm9m","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Rechargeable lithium-ion batteries (LIBs) have gained popularity and the attention of numerous researchers in recent times because of their benefits. The separator membrane is one of the most important parts of the LIB. Separator membranes are made of polymeric materials, one of which is cellulose acetate (CA). In this study, we synthesize CA from corn husk. There are 2 methodological ways in this study, namely the synthesis of CA which consists of delignification and acetylation, and fabrication of PVDF/ CA/ Nanoclay electrolyte membrane with variation of CA PVDF (0%:100, 10%: 90%, 20%: 80%, 30%: 70%, 50%: 50%). The synthesis of CA from corn husk exhibits XRD results which were comparable to the peak of commercial CA. Meanwhile, the PVDF/ CA-Nanoclay-based separator membrane with the composition of 50% PVDF and 50% CA had the best characterization results with an electrolyte uptake value of 139.649% and a porosity value of 79.11%. Based on the attained results, the CA extracted from corn husk in this study is applicable to use for the fabrication of electrolyte membrane.
近来,可充电锂离子电池(LIB)因其优点而受到众多研究人员的青睐和关注。隔膜是锂离子电池最重要的部件之一。分离膜由聚合物材料制成,醋酸纤维素(CA)就是其中之一。在本研究中,我们从玉米皮中合成了 CA。本研究采用了两种方法,即由脱木素和乙酰化组成的 CA 合成法,以及以不同的 CA PVDF(0%:100、10%:90%、20%:80%、30%:70%、50%:50%)制备 PVDF/ CA/ Nanoclay 电解质膜。从玉米皮中合成的 CA 的 XRD 结果与商用 CA 的峰值相当。同时,50% PVDF 和 50% CA 组成的 PVDF/ CA-Nanoclay 基分离膜的表征结果最好,电解质吸收值为 139.649%,孔隙率为 79.11%。根据所得结果,本研究中从玉米皮中提取的 CA 适用于电解质膜的制造。