Transforming Customer Experience in the Airline Industry: A Comprehensive Analysis of Twitter Sentiments Using Machine Learning and Association Rule Mining

Maliha Tayaba, Eftekhar Hossain Ayon, Md Tuhin Mia, Malay Sarkar, Rejon Kumar Ray, Md. Salim Chowdhury, Md. Al-Imran, Nur Nobe, Bishnu Padh Ghosh, MD Tanvir Islam, Aisharyja Roy Puja
{"title":"Transforming Customer Experience in the Airline Industry: A Comprehensive Analysis of Twitter Sentiments Using Machine Learning and Association Rule Mining","authors":"Maliha Tayaba, Eftekhar Hossain Ayon, Md Tuhin Mia, Malay Sarkar, Rejon Kumar Ray, Md. Salim Chowdhury, Md. Al-Imran, Nur Nobe, Bishnu Padh Ghosh, MD Tanvir Islam, Aisharyja Roy Puja","doi":"10.32996/jcsts.2023.5.4.20","DOIUrl":null,"url":null,"abstract":"The airline industry places significant emphasis on improving customer experience, and Twitter has emerged as a key platform for passengers to share their opinions. This research introduces a machine learning approach to analyze tweets and enhance customer experience. Features are extracted from tweets using both the Glove dictionary and n-gram methods for word embedding. The study explores various artificial neural network (ANN) architectures and Support Vector Machines (SVM) to create a classification model for categorizing tweets into positive and negative sentiments. Additionally, a Convolutional Neural Network (CNN) is developed for tweet classification, and its performance is compared with the most accurate model identified among SVM and multiple ANN architectures. The results indicate that the CNN model surpasses the SVM and ANN models. To provide further insights, association rule mining is applied to different tweet categories, revealing connections with sentiment categories. These findings offer valuable information to help airline industries refine and enhance their customer experience strategies.","PeriodicalId":509154,"journal":{"name":"Journal of Computer Science and Technology Studies","volume":"60 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32996/jcsts.2023.5.4.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The airline industry places significant emphasis on improving customer experience, and Twitter has emerged as a key platform for passengers to share their opinions. This research introduces a machine learning approach to analyze tweets and enhance customer experience. Features are extracted from tweets using both the Glove dictionary and n-gram methods for word embedding. The study explores various artificial neural network (ANN) architectures and Support Vector Machines (SVM) to create a classification model for categorizing tweets into positive and negative sentiments. Additionally, a Convolutional Neural Network (CNN) is developed for tweet classification, and its performance is compared with the most accurate model identified among SVM and multiple ANN architectures. The results indicate that the CNN model surpasses the SVM and ANN models. To provide further insights, association rule mining is applied to different tweet categories, revealing connections with sentiment categories. These findings offer valuable information to help airline industries refine and enhance their customer experience strategies.
改变航空业的客户体验:利用机器学习和关联规则挖掘全面分析 Twitter 情绪
航空业非常重视改善客户体验,而 Twitter 已成为乘客分享意见的重要平台。这项研究引入了一种机器学习方法来分析推文并提升客户体验。使用 Glove 词典和 n-gram 方法从推文中提取特征进行词嵌入。研究探索了各种人工神经网络(ANN)架构和支持向量机(SVM),以创建一个分类模型,将推文分为积极情绪和消极情绪。此外,还开发了用于推文分类的卷积神经网络(CNN),并将其性能与 SVM 和多种人工神经网络架构中最准确的模型进行了比较。结果表明,CNN 模型超过了 SVM 和 ANN 模型。为了提供更深入的见解,对不同的推文类别进行了关联规则挖掘,揭示了与情感类别之间的联系。这些发现提供了宝贵的信息,有助于航空业完善和增强其客户体验战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信