Application of Stable Random Vector with Gaussian Copula

Vo Thi Truc Giang, Ho Dang Phuc
{"title":"Application of Stable Random Vector with Gaussian Copula","authors":"Vo Thi Truc Giang, Ho Dang Phuc","doi":"10.25073/2588-1124/vnumap.4819","DOIUrl":null,"url":null,"abstract":"More and more real-world datasets have heavy-tailed distribution, while the calculations for these distributions in multi-dimensional cases are complex. This work shows a method to investigate data of multivariate heavy-tailed distributions. The sufficient condition for every a-stable random vector is that it has α-stable marginals and Gaussian copula. From that results, we have a procedure testing stable distribution of multi-dimensional data and a formula representing density functions of multivariate stable distribution. Adopted a new tool, datasets about daily returns of 4 stocks on HoSE and 3 grains were analyzed.","PeriodicalId":303178,"journal":{"name":"VNU Journal of Science: Mathematics - Physics","volume":"242 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Mathematics - Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1124/vnumap.4819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

More and more real-world datasets have heavy-tailed distribution, while the calculations for these distributions in multi-dimensional cases are complex. This work shows a method to investigate data of multivariate heavy-tailed distributions. The sufficient condition for every a-stable random vector is that it has α-stable marginals and Gaussian copula. From that results, we have a procedure testing stable distribution of multi-dimensional data and a formula representing density functions of multivariate stable distribution. Adopted a new tool, datasets about daily returns of 4 stocks on HoSE and 3 grains were analyzed.
稳定随机向量与高斯 Copula 的应用
现实世界中越来越多的数据集具有重尾分布,而这些分布在多维情况下的计算非常复杂。这项工作展示了一种研究多元重尾分布数据的方法。每个 a 稳定随机向量的充分条件是它具有 α 稳定边际和高斯协程。从这些结果中,我们得到了测试多维数据稳定分布的程序和表示多元稳定分布密度函数的公式。利用新工具,我们分析了 4 只荷证股票和 3 种谷物的日收益数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信