{"title":"Development of an Assessment Scale for Measurement of Usability and User Experience Characteristics of Bing Chat Conversational AI","authors":"G. Bubaš, Antonela Čižmešija, Andreja Kovačić","doi":"10.3390/fi16010004","DOIUrl":null,"url":null,"abstract":"After the introduction of the ChatGPT conversational artificial intelligence (CAI) tool in November 2022, there has been a rapidly growing interest in the use of such tools in higher education. While the educational uses of some other information technology (IT) tools (including collaboration and communication tools, learning management systems, chatbots, and videoconferencing tools) have been frequently evaluated regarding technology acceptance and usability attributes of those technologies, similar evaluations of CAI tools and services like ChatGPT, Bing Chat, and Bard have only recently started to appear in the scholarly literature. In our study, we present a newly developed set of assessment scales that are related to the usability and user experiences of CAI tools when used by university students, as well as the results of evaluation of these assessment scales specifically regarding the CAI Bing Chat tool (i.e., Microsoft Copilot). The following scales were developed and evaluated using a convenience sample (N = 126) of higher education students: Perceived Usefulness, General Usability, Learnability, System Reliability, Visual Design and Navigation, Information Quality, Information Display, Cognitive Involvement, Design Appeal, Trust, Personification, Risk Perception, and Intention to Use. For most of the aforementioned scales, internal consistency (Cronbach alpha) was in the range from satisfactory to good, which implies their potential usefulness for further studies of related attributes of CAI tools. A stepwise linear regression revealed that the most influential predictors of Intention to Use Bing Chat (or ChatGPT) in the future were the usability variable Perceived Usefulness and two user experience variables—Trust and Design Appeal. Also, our study revealed that students’ perceptions of various specific usability and user experience characteristics of Bing Chat were predominantly positive. The evaluated assessment scales could be beneficial in further research that would include other CAI tools like ChatGPT/GPT-4 and Bard.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"21 6","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
After the introduction of the ChatGPT conversational artificial intelligence (CAI) tool in November 2022, there has been a rapidly growing interest in the use of such tools in higher education. While the educational uses of some other information technology (IT) tools (including collaboration and communication tools, learning management systems, chatbots, and videoconferencing tools) have been frequently evaluated regarding technology acceptance and usability attributes of those technologies, similar evaluations of CAI tools and services like ChatGPT, Bing Chat, and Bard have only recently started to appear in the scholarly literature. In our study, we present a newly developed set of assessment scales that are related to the usability and user experiences of CAI tools when used by university students, as well as the results of evaluation of these assessment scales specifically regarding the CAI Bing Chat tool (i.e., Microsoft Copilot). The following scales were developed and evaluated using a convenience sample (N = 126) of higher education students: Perceived Usefulness, General Usability, Learnability, System Reliability, Visual Design and Navigation, Information Quality, Information Display, Cognitive Involvement, Design Appeal, Trust, Personification, Risk Perception, and Intention to Use. For most of the aforementioned scales, internal consistency (Cronbach alpha) was in the range from satisfactory to good, which implies their potential usefulness for further studies of related attributes of CAI tools. A stepwise linear regression revealed that the most influential predictors of Intention to Use Bing Chat (or ChatGPT) in the future were the usability variable Perceived Usefulness and two user experience variables—Trust and Design Appeal. Also, our study revealed that students’ perceptions of various specific usability and user experience characteristics of Bing Chat were predominantly positive. The evaluated assessment scales could be beneficial in further research that would include other CAI tools like ChatGPT/GPT-4 and Bard.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.