Machine-Learning-Based Design Optimization of Chassis Bushings

Vehicles Pub Date : 2023-12-23 DOI:10.3390/vehicles6010001
E. Töpel, Alexander Fuchs, K. Büttner, Michael Kaliske, G. Prokop
{"title":"Machine-Learning-Based Design Optimization of Chassis Bushings","authors":"E. Töpel, Alexander Fuchs, K. Büttner, Michael Kaliske, G. Prokop","doi":"10.3390/vehicles6010001","DOIUrl":null,"url":null,"abstract":"In this work, a method is developed for the component design of chassis bushings with contoured inner cores, aided by artificial neural networks (ANNs) and design optimization. First, a model of a physical chassis bushing is generated using the finite element method (FEM). To determine the material parameters of the material model, a material parameter optimization is conducted. Based on the bushing model, different samples for a design study are generated using the design of experiments method. Due to invalid areas of the geometrical model definitions, constraints are established and the design parameter space is cleaned up. From the cleaned design parameter space, a database of several design parameter samples and three associated quasi-static stiffnesses, calculated with FEM simulations, is generated. The database is subsequently used for the training and hyper-parameter optimization of the ANN. Subsequently, the feed-forward ANN is employed in a design study, where stiffnesses are prescribed and design parameters identified. The design process is inverted with the help of a constrained design parameter optimization (DO), based on particle swarm optimization (PSO). Two usecases are defined for the evaluation of the design accuracy of the entire method. The design parameters found are validated by corresponding FEM simulations.","PeriodicalId":509694,"journal":{"name":"Vehicles","volume":"20 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vehicles6010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a method is developed for the component design of chassis bushings with contoured inner cores, aided by artificial neural networks (ANNs) and design optimization. First, a model of a physical chassis bushing is generated using the finite element method (FEM). To determine the material parameters of the material model, a material parameter optimization is conducted. Based on the bushing model, different samples for a design study are generated using the design of experiments method. Due to invalid areas of the geometrical model definitions, constraints are established and the design parameter space is cleaned up. From the cleaned design parameter space, a database of several design parameter samples and three associated quasi-static stiffnesses, calculated with FEM simulations, is generated. The database is subsequently used for the training and hyper-parameter optimization of the ANN. Subsequently, the feed-forward ANN is employed in a design study, where stiffnesses are prescribed and design parameters identified. The design process is inverted with the help of a constrained design parameter optimization (DO), based on particle swarm optimization (PSO). Two usecases are defined for the evaluation of the design accuracy of the entire method. The design parameters found are validated by corresponding FEM simulations.
基于机器学习的底盘衬套设计优化
在这项工作中,利用人工神经网络(ANN)和优化设计,开发了一种带轮廓内核的底盘衬套部件设计方法。首先,使用有限元法(FEM)生成一个物理底盘衬套模型。为确定材料模型的材料参数,进行了材料参数优化。在衬套模型的基础上,使用实验设计法生成不同的样品,用于设计研究。由于几何模型定义存在无效区域,因此需要建立约束条件并清理设计参数空间。根据清理后的设计参数空间,生成一个包含多个设计参数样本和三个相关准静态刚度的数据库,这些刚度是通过有限元模拟计算得出的。随后,该数据库将用于训练和优化 ANN 的超参数。随后,在设计研究中使用前馈方差网络,规定刚度并确定设计参数。在基于粒子群优化(PSO)的约束设计参数优化(DO)的帮助下,设计过程被反转。为评估整个方法的设计精度,定义了两个使用案例。找到的设计参数通过相应的有限元模拟进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信