Neural network technologies in prediction the effectiveness of treatment of patients with pulmonary tuberculosis

M. A. Alymenko, R. S. Valiev, N. R. Valiev, V. M. Kolomiets, S. N. Volkova, А. V. Polonikov, G. S. Mal, I. N. Tragira, V. A. Ragulina, E. V. Popova, E. P. Pavlenko, N. P. Balobanova, А. V. Batishchev
{"title":"Neural network technologies in prediction the effectiveness of treatment of patients with pulmonary tuberculosis","authors":"M. A. Alymenko, R. S. Valiev, N. R. Valiev, V. M. Kolomiets, S. N. Volkova, А. V. Polonikov, G. S. Mal, I. N. Tragira, V. A. Ragulina, E. V. Popova, E. P. Pavlenko, N. P. Balobanova, А. V. Batishchev","doi":"10.17021/1992-6499-2023-4-11-18","DOIUrl":null,"url":null,"abstract":"The study used predicting the effectiveness of treatment of patients with pulmonary tuberculosis using neural network technologies. The most optimal neural network model was obtained, which allows predicting the effectiveness of treatment with a forecast accuracy of at least 78.4%. As a result of constructing a neural network model, the most significant «input» parameters of the neural network were identified: the presence of hepatotoxic reactions, the level of IL-1ß, IL-6, IL-4, IL-10, IFN-γ, C-reactive protein before the start of the intensive phase of chemotherapy, the presence of antibiotic resistance, the presence of mycobacterium tuberculosis before the appointment of a specific chemotherapy by seeding, the volume of lung tissue damage, the chemotherapy regimen, the clinical form of pulmonary tuberculosis, as well as the genotype of ЕЕ gene GSTT1.","PeriodicalId":269283,"journal":{"name":"ASTRAKHAN MEDICAL JOURNAL","volume":"319 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASTRAKHAN MEDICAL JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17021/1992-6499-2023-4-11-18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study used predicting the effectiveness of treatment of patients with pulmonary tuberculosis using neural network technologies. The most optimal neural network model was obtained, which allows predicting the effectiveness of treatment with a forecast accuracy of at least 78.4%. As a result of constructing a neural network model, the most significant «input» parameters of the neural network were identified: the presence of hepatotoxic reactions, the level of IL-1ß, IL-6, IL-4, IL-10, IFN-γ, C-reactive protein before the start of the intensive phase of chemotherapy, the presence of antibiotic resistance, the presence of mycobacterium tuberculosis before the appointment of a specific chemotherapy by seeding, the volume of lung tissue damage, the chemotherapy regimen, the clinical form of pulmonary tuberculosis, as well as the genotype of ЕЕ gene GSTT1.
预测肺结核患者治疗效果的神经网络技术
该研究利用神经网络技术预测肺结核患者的治疗效果。研究获得了最优化的神经网络模型,该模型可以预测治疗效果,预测准确率至少为 78.4%。通过构建神经网络模型,确定了神经网络最重要的 "输入 "参数:化疗强化阶段开始前是否出现肝毒性反应、IL-1ß、IL-6、IL-4、IL-10、IFN-γ、C 反应蛋白水平、是否出现抗生素耐药性、是否出现结核分枝杆菌、肺组织损伤量、化疗方案、肺结核的临床形式以及ЕЕ基因 GSTT1 的基因型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信