{"title":"Analysis and Prediction of Factors Influencing Carbon Emissions of Energy Consumption Under Climate Change","authors":"Kunyue Zhang, Mingru Tao, Jinmin Hao","doi":"10.13052/spee1048-5236.4314","DOIUrl":null,"url":null,"abstract":"Climate change is one of the major challenges currently facing the world. The factors influencing the carbon emission of energy consumption and the future trend are important guidance for proposing scientific carbon reduction strategies to mitigate climate change. In this paper, the Logarithmic Mean Divisia Index (LMDI) model and stochastic impacts by regression population, affluence and technology (STIRPAT) model are established to analyze and predict the carbon emission of energy consumption. The LMDI model is used to factorize the CO2 changes generated by residential domestic energy consumption, and to decompose and analyze the carbon emission factors of residential domestic energy consumption in terms of energy carbon emission intensity, energy consumption structure, energy consumption intensity, economic development, and population to determine the driving factors leading to carbon emission changes; based on the above study, we set up nine different development scenarios and applied the scalable stochastic environmental impact assessment model to project energy carbon emissions in 2035; based on carbon emission prediction and analysis, the CO2 emissions of total energy consumption, total electricity consumption, industrial energy consumption and terminal energy consumption were selected, and the correlation coefficients with relevant climate indicators such as temperature change and humidity change were analyzed, and the stress model of energy consumption on climate change was constructed. The results show that: the correlation coefficients of energy consumption indicators and temperature change indicators all pass the significance test at P = 0.01 level, among which the correlation coefficients with temperature difference are the highest, all of them are greater than 0.9 and pass the significance test at P = 0.001 level; among the indicators of energy consumption, the correlation coefficient between total industrial energy consumption and temperature difference was slightly higher than that of total energy consumption and electricity consumption; the stress relationship between the increase of energy consumption and the temperature difference is consistent with the growth of the third polynomial curve.","PeriodicalId":35712,"journal":{"name":"Strategic Planning for Energy and the Environment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strategic Planning for Energy and the Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/spee1048-5236.4314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change is one of the major challenges currently facing the world. The factors influencing the carbon emission of energy consumption and the future trend are important guidance for proposing scientific carbon reduction strategies to mitigate climate change. In this paper, the Logarithmic Mean Divisia Index (LMDI) model and stochastic impacts by regression population, affluence and technology (STIRPAT) model are established to analyze and predict the carbon emission of energy consumption. The LMDI model is used to factorize the CO2 changes generated by residential domestic energy consumption, and to decompose and analyze the carbon emission factors of residential domestic energy consumption in terms of energy carbon emission intensity, energy consumption structure, energy consumption intensity, economic development, and population to determine the driving factors leading to carbon emission changes; based on the above study, we set up nine different development scenarios and applied the scalable stochastic environmental impact assessment model to project energy carbon emissions in 2035; based on carbon emission prediction and analysis, the CO2 emissions of total energy consumption, total electricity consumption, industrial energy consumption and terminal energy consumption were selected, and the correlation coefficients with relevant climate indicators such as temperature change and humidity change were analyzed, and the stress model of energy consumption on climate change was constructed. The results show that: the correlation coefficients of energy consumption indicators and temperature change indicators all pass the significance test at P = 0.01 level, among which the correlation coefficients with temperature difference are the highest, all of them are greater than 0.9 and pass the significance test at P = 0.001 level; among the indicators of energy consumption, the correlation coefficient between total industrial energy consumption and temperature difference was slightly higher than that of total energy consumption and electricity consumption; the stress relationship between the increase of energy consumption and the temperature difference is consistent with the growth of the third polynomial curve.