Wang Yang, Gao Yi, Zou Zhiyu, Chen Yue, Xudong Wang, Luo Shuai, Liu Ning, Zhou Jin, Yan Dawei
{"title":"Correlation Analysis and Monitoring Method of Carbon Emissions in the Steel Industry Based on Big Data","authors":"Wang Yang, Gao Yi, Zou Zhiyu, Chen Yue, Xudong Wang, Luo Shuai, Liu Ning, Zhou Jin, Yan Dawei","doi":"10.13052/spee1048-5236.4312","DOIUrl":null,"url":null,"abstract":"Excessive carbon emissions will lead to catastrophic consequences such as global warming and rising oceans and will also have a serious negative impact on the human food supply and living environment. The steel industry is characterized by high pollution, and about 18% of China’s carbon emissions come from the steel industry. The ‘double carbon’ strategy has brought important tasks and severe challenges to China’s steel industry. With a view to evaluating the achievements of carbon emission control, carbon emission monitoring systems at home and abroad have been continuously established and improved. For the steel industry, accurate and efficient carbon monitoring technology has a guiding role in guiding energy conservation and carbon reduction. Traditional carbon emission accounting methods have some problems, such as long cycles and poor data quality, which restrict the improvement of the lean level of carbon emission monitoring management. Firstly, this paper investigates and analyzes the productive process and carbon emission process of the steel industry and constructs an entropy weight-grey correlation -TOPSIS analysis method for the correlation between carbon emissions and influencing factors. Based on the above content, a carbon emission monitoring method based on multiple influencing factors is put forward, and the high monitoring accuracy of the model is proved by taking the Tianjin steel industry as an example. The results show that information mining of relevant data can strikingly increase the accuracy of carbon emission monitoring in the steel industry.","PeriodicalId":35712,"journal":{"name":"Strategic Planning for Energy and the Environment","volume":"2003 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strategic Planning for Energy and the Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/spee1048-5236.4312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Excessive carbon emissions will lead to catastrophic consequences such as global warming and rising oceans and will also have a serious negative impact on the human food supply and living environment. The steel industry is characterized by high pollution, and about 18% of China’s carbon emissions come from the steel industry. The ‘double carbon’ strategy has brought important tasks and severe challenges to China’s steel industry. With a view to evaluating the achievements of carbon emission control, carbon emission monitoring systems at home and abroad have been continuously established and improved. For the steel industry, accurate and efficient carbon monitoring technology has a guiding role in guiding energy conservation and carbon reduction. Traditional carbon emission accounting methods have some problems, such as long cycles and poor data quality, which restrict the improvement of the lean level of carbon emission monitoring management. Firstly, this paper investigates and analyzes the productive process and carbon emission process of the steel industry and constructs an entropy weight-grey correlation -TOPSIS analysis method for the correlation between carbon emissions and influencing factors. Based on the above content, a carbon emission monitoring method based on multiple influencing factors is put forward, and the high monitoring accuracy of the model is proved by taking the Tianjin steel industry as an example. The results show that information mining of relevant data can strikingly increase the accuracy of carbon emission monitoring in the steel industry.