On the Dirac-like equation in 7-component space-time and generalized Clifford-Dirac algebra

IF 1 Q1 MATHEMATICS
V.M. Simulik
{"title":"On the Dirac-like equation in 7-component space-time and generalized Clifford-Dirac algebra","authors":"V.M. Simulik","doi":"10.15330/cmp.15.2.529-542","DOIUrl":null,"url":null,"abstract":"The generalized Dirac equation related to 7-component space-time with one time coordinate and six space coordinates has been introduced. Three 8-component Dirac equations have been derived from the same 256-dimensional Clifford-Dirac matrix algebra. Corresponding Clifford-Dirac algebra is considered in the Pauli-Dirac representation of $8 \\times 8$ gamma matrices. It is proved that this matrix algebra over the field of real numbers has 256-dimensional basis and it is isomorphic to geometric $\\textit{C}\\ell^{\\texttt{R}}$(1,7) algebra. The corresponding gamma matrix representation of 45-dimensional $\\mathrm{SO}(1,9)$ algebra is derived and the way of its generalization to the $\\mathrm{SO}(m,n)$ algebra is demonstrated. The Klein-Gordon equation in 7-component space-time is considered as well. The way of corresponding consideration of the Maxwell equations and of equations for an arbitrary spin is indicated.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":"2004 21","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.2.529-542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The generalized Dirac equation related to 7-component space-time with one time coordinate and six space coordinates has been introduced. Three 8-component Dirac equations have been derived from the same 256-dimensional Clifford-Dirac matrix algebra. Corresponding Clifford-Dirac algebra is considered in the Pauli-Dirac representation of $8 \times 8$ gamma matrices. It is proved that this matrix algebra over the field of real numbers has 256-dimensional basis and it is isomorphic to geometric $\textit{C}\ell^{\texttt{R}}$(1,7) algebra. The corresponding gamma matrix representation of 45-dimensional $\mathrm{SO}(1,9)$ algebra is derived and the way of its generalization to the $\mathrm{SO}(m,n)$ algebra is demonstrated. The Klein-Gordon equation in 7-component space-time is considered as well. The way of corresponding consideration of the Maxwell equations and of equations for an arbitrary spin is indicated.
论 7 分量时空中的类狄拉克方程和广义克利福德-狄拉克代数
介绍了与具有一个时间坐标和六个空间坐标的 7 分量时空相关的广义狄拉克方程。从同一个 256 维克利福德-狄拉克矩阵代数中导出了三个 8 分量狄拉克方程。相应的克利福德-狄拉克代数是在 $8 \times 8$ 伽玛矩阵的保利-狄拉克表示中考虑的。研究证明,这个实数域上的矩阵代数有 256 维基,并且与几何 $\textit{C}\ell^{texttt{R}}$(1,7) 代数同构。推导了 45 维 $\mathrm{SO}(1,9)$ 代数的相应伽马矩阵表示,并证明了其推广到 $\mathrm{SO}(m,n)$ 代数的方法。同时还考虑了 7 分量时空中的克莱因-戈登方程。还指出了相应地考虑麦克斯韦方程和任意自旋方程的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信