Hopf Bifurcation of Three-Dimensional Quadratic Jerk System

IF 1.2 Q3 MULTIDISCIPLINARY SCIENCES
Tahsin I. Rasul, Rizgar H. Salih
{"title":"Hopf Bifurcation of Three-Dimensional Quadratic Jerk System","authors":"Tahsin I. Rasul, Rizgar H. Salih","doi":"10.21123/bsj.2023.8945","DOIUrl":null,"url":null,"abstract":"This paper is devoted to investigating the Hopf bifurcation of a three-dimensional quadratic jerk system. The stability of the singular points, the appearance of the Hopf bifurcation and the limit cycles of the system are studied. Additionally, the Liapunov quantities technique is used to study the cyclicity of the system and find how many limit cycles can be bifurcated from the Hopf points. Due to the computational load required for computing Liapunov quantities, some parameters are fixed. Currently, the analysis shows that three limit cycles can be bifurcated from the Hopf points.  The results presented in this study are verified using MAPLE program.","PeriodicalId":8687,"journal":{"name":"Baghdad Science Journal","volume":"2019 37","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Baghdad Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21123/bsj.2023.8945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is devoted to investigating the Hopf bifurcation of a three-dimensional quadratic jerk system. The stability of the singular points, the appearance of the Hopf bifurcation and the limit cycles of the system are studied. Additionally, the Liapunov quantities technique is used to study the cyclicity of the system and find how many limit cycles can be bifurcated from the Hopf points. Due to the computational load required for computing Liapunov quantities, some parameters are fixed. Currently, the analysis shows that three limit cycles can be bifurcated from the Hopf points.  The results presented in this study are verified using MAPLE program.
三维二次跃迁系统的霍普夫分岔
本文致力于研究三维二次方抽动系统的霍普夫分岔。研究了奇异点的稳定性、霍普夫分岔的出现以及系统的极限循环。此外,还使用了李雅普诺夫量技术来研究系统的循环性,并找出从霍普夫分岔点可以分岔出多少个极限循环。由于计算 Liapunov 量所需的计算负荷,一些参数是固定的。目前,分析表明,从霍普夫点可以分叉出三个极限循环。 本研究提出的结果已通过 MAPLE 程序验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Baghdad Science Journal
Baghdad Science Journal MULTIDISCIPLINARY SCIENCES-
CiteScore
2.00
自引率
50.00%
发文量
102
审稿时长
24 weeks
期刊介绍: The journal publishes academic and applied papers dealing with recent topics and scientific concepts. Papers considered for publication in biology, chemistry, computer sciences, physics, and mathematics. Accepted papers will be freely downloaded by professors, researchers, instructors, students, and interested workers. ( Open Access) Published Papers are registered and indexed in the universal libraries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信