Setting Statistical Hurdles for Publishing in Accounting

S. Teoh, Yinglei Zhang
{"title":"Setting Statistical Hurdles for Publishing in Accounting","authors":"S. Teoh, Yinglei Zhang","doi":"10.1515/ael-2022-0104","DOIUrl":null,"url":null,"abstract":"Abstract Ohlson (2023) argues that researchers tacitly avoid raising statistics-related ‘elephants’ that could undermine inferences. We offer a balanced perspective, first applauding the remarkable progress made in deriving testable predictions, leveraging modern statistical techniques, and tapping alternative Big Data sources to address issues relevant to practitioners, regulators and academia. While we concur with Ohlson’s elephants, we caution against over-criticism based on statistical design choices, as it risks creating new elephants. Our key lessons: focus on meaningful hypotheses, recognize merits of descriptive studies, balance Type I and II errors in data handling and journal reviewing, employ proper context when interpreting statistical significance and consider economic significance. Overall, though empirical accounting research faces challenges, criticism should not deter innovative research (Type II error in journal reviewing).","PeriodicalId":503384,"journal":{"name":"Accounting, Economics, and Law: A Convivium","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounting, Economics, and Law: A Convivium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ael-2022-0104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Ohlson (2023) argues that researchers tacitly avoid raising statistics-related ‘elephants’ that could undermine inferences. We offer a balanced perspective, first applauding the remarkable progress made in deriving testable predictions, leveraging modern statistical techniques, and tapping alternative Big Data sources to address issues relevant to practitioners, regulators and academia. While we concur with Ohlson’s elephants, we caution against over-criticism based on statistical design choices, as it risks creating new elephants. Our key lessons: focus on meaningful hypotheses, recognize merits of descriptive studies, balance Type I and II errors in data handling and journal reviewing, employ proper context when interpreting statistical significance and consider economic significance. Overall, though empirical accounting research faces challenges, criticism should not deter innovative research (Type II error in journal reviewing).
为出版《会计学》设置统计障碍
摘要 Ohlson(2023 年)认为,研究人员默契地避免提出可能会破坏推论的统计相关 "大象"。我们提供了一个平衡的视角,首先赞扬在推导可检验的预测、利用现代统计技术和挖掘替代大数据源以解决与从业人员、监管机构和学术界相关的问题方面取得的显著进展。虽然我们同意 Ohlson 提出的 "大象 "观点,但我们提醒大家不要根据统计设计选择进行过度批评,因为这样做有可能造成新的 "大象"。我们的主要经验是:关注有意义的假设,认识到描述性研究的优点,平衡数据处理和期刊审阅中的第一类和第二类错误,在解释统计意义时采用适当的上下文,并考虑经济意义。总之,尽管实证会计研究面临挑战,但批评不应阻碍创新研究(期刊审阅中的第二类错误)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信