Md. Kamrul Hasan Arnab, Moynul Hasan, Md. Monirul Islam
{"title":"Insight into the Structure-Activity Relationship of Antimicrobial Peptide Brevinin","authors":"Md. Kamrul Hasan Arnab, Moynul Hasan, Md. Monirul Islam","doi":"10.35516/jjps.v16i4.1327","DOIUrl":null,"url":null,"abstract":"Numerous amphibian species, particularly those of the genus Rana, have been found to produce linear, amphiphilic, and cationic antimicrobial peptides (AMPs). Such AMPs are gaining more attention in pharmaceutical applications due to their principal method of action, which involves penetrating and rupturing the intended cell membranes with relatively low resistance. Brevinin is a large family of AMPs extensively studied during the last few decades, primarily consisting of two groups of peptides: Brevinin-1 and Brevinin-2. These peptides are cationic and establish secondary structures in the biological membrane environment. In this discussion, we explore the effects of structural parameters (net charge, hydrophobicity, amphiphilicity, helicity, peptide length, etc.) of Brevinin on their antimicrobial activity. As a general rule, an increased net charge tends to enhance antimicrobial activity. However, it is important to note that excessive net charges can also elevate hemolytic activity. The amino acid composition significantly influences hydrophobicity and helicity, which, in turn, impact the activity of the peptides. Moreover, these structural parameters are interconnected; modifying one parameter will affect others. Striking an optimal balance in these factors will provide a Brevinin analog with the highest antimicrobial activity and the lowest hemolytic activity.","PeriodicalId":14719,"journal":{"name":"Jordan Journal of Pharmaceutical Sciences","volume":"7 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35516/jjps.v16i4.1327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous amphibian species, particularly those of the genus Rana, have been found to produce linear, amphiphilic, and cationic antimicrobial peptides (AMPs). Such AMPs are gaining more attention in pharmaceutical applications due to their principal method of action, which involves penetrating and rupturing the intended cell membranes with relatively low resistance. Brevinin is a large family of AMPs extensively studied during the last few decades, primarily consisting of two groups of peptides: Brevinin-1 and Brevinin-2. These peptides are cationic and establish secondary structures in the biological membrane environment. In this discussion, we explore the effects of structural parameters (net charge, hydrophobicity, amphiphilicity, helicity, peptide length, etc.) of Brevinin on their antimicrobial activity. As a general rule, an increased net charge tends to enhance antimicrobial activity. However, it is important to note that excessive net charges can also elevate hemolytic activity. The amino acid composition significantly influences hydrophobicity and helicity, which, in turn, impact the activity of the peptides. Moreover, these structural parameters are interconnected; modifying one parameter will affect others. Striking an optimal balance in these factors will provide a Brevinin analog with the highest antimicrobial activity and the lowest hemolytic activity.
期刊介绍:
The Jordan Journal of Pharmaceutical Sciences (JJPS) is a scientific, bi-annual, peer-reviewed publication that will focus on current topics of interest to the pharmaceutical community at large. Although the JJPS is intended to be of interest to pharmaceutical scientists, other healthy workers, and manufacturing processors will also find it most interesting and informative. Papers will cover basic pharmaceutical and applied research, scientific commentaries, as well as views, reviews. Topics on products will include manufacturing process, quality control, pharmaceutical engineering, pharmaceutical technology, and philosophies on all aspects of pharmaceutical sciences. The editorial advisory board would like to place an emphasis on new and innovative methods, technologies, and techniques for the pharmaceutical industry. The reader will find a broad range of important topics in this first issue.