A novel lead‐free relaxor with endotaxial nanostructures for capacitive energy storage

SusMat Pub Date : 2023-12-25 DOI:10.1002/sus2.174
Xiaoyan Dong, Tengfei Hu, Xiaojun Wu, Jie Yin, Zhengqian Fu, Jiagang Wu
{"title":"A novel lead‐free relaxor with endotaxial nanostructures for capacitive energy storage","authors":"Xiaoyan Dong, Tengfei Hu, Xiaojun Wu, Jie Yin, Zhengqian Fu, Jiagang Wu","doi":"10.1002/sus2.174","DOIUrl":null,"url":null,"abstract":"Dielectric capacitors with a fast charging/discharging rate, high power density, and long‐term stability are essential components in modern electrical devices. However, miniaturizing and integrating capacitors face a persistent challenge in improving their energy density (Wrec) to satisfy the specifications of advanced electronic systems and applications. In this work, leveraging phase‐field simulations, we judiciously designed a novel lead‐free relaxor ferroelectric material for enhanced energy storage performance, featuring flexible distributed weakly polar endotaxial nanostructures (ENs) embedded within a strongly polar fluctuation matrix. The matrix contributes to substantially enhanced polarization under an external electric field, and the randomly dispersed ENs effectively optimize breakdown phase proportion and provide a strong restoring force, which are advantageous in bolstering breakdown strength and minimizing hysteresis. Remarkably, this relaxor ferroelectric system incorporating ENs achieves an exceptionally high Wrec value of 10.3 J/cm3, accompanied by a large energy storage efficiency (η) of 85.4%. This work introduces a promising avenue for designing new relaxor materials capable of capacitive energy storage with exceptional performance characteristics.","PeriodicalId":506315,"journal":{"name":"SusMat","volume":"3 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SusMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sus2.174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dielectric capacitors with a fast charging/discharging rate, high power density, and long‐term stability are essential components in modern electrical devices. However, miniaturizing and integrating capacitors face a persistent challenge in improving their energy density (Wrec) to satisfy the specifications of advanced electronic systems and applications. In this work, leveraging phase‐field simulations, we judiciously designed a novel lead‐free relaxor ferroelectric material for enhanced energy storage performance, featuring flexible distributed weakly polar endotaxial nanostructures (ENs) embedded within a strongly polar fluctuation matrix. The matrix contributes to substantially enhanced polarization under an external electric field, and the randomly dispersed ENs effectively optimize breakdown phase proportion and provide a strong restoring force, which are advantageous in bolstering breakdown strength and minimizing hysteresis. Remarkably, this relaxor ferroelectric system incorporating ENs achieves an exceptionally high Wrec value of 10.3 J/cm3, accompanied by a large energy storage efficiency (η) of 85.4%. This work introduces a promising avenue for designing new relaxor materials capable of capacitive energy storage with exceptional performance characteristics.
用于电容式储能的具有内轴纳米结构的新型无铅弛豫器
具有快速充放电速率、高功率密度和长期稳定性的电介质电容器是现代电子设备的重要组件。然而,如何提高电容器的能量密度(Wrec)以满足先进电子系统和应用的规格要求,是电容器小型化和集成化面临的长期挑战。在这项工作中,我们利用相场模拟,明智地设计了一种新型无铅弛豫铁电材料来提高储能性能,其特点是在强极性波动矩阵中嵌入了柔性分布的弱极性内轴纳米结构(ENs)。基质有助于大幅增强外部电场下的极化,而随机分散的ENs则有效优化了击穿相的比例,并提供了强大的恢复力,这些都有利于增强击穿强度和减少滞后。值得注意的是,这种含有 ENs 的弛豫铁电系统实现了 10.3 J/cm3 的超高 Wrec 值,同时还具有 85.4% 的高储能效率 (η)。这项研究为设计新型弛豫器材料提供了一条大有可为的途径,这种材料能够以优异的性能特性进行电容式储能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信