{"title":"A novel lead‐free relaxor with endotaxial nanostructures for capacitive energy storage","authors":"Xiaoyan Dong, Tengfei Hu, Xiaojun Wu, Jie Yin, Zhengqian Fu, Jiagang Wu","doi":"10.1002/sus2.174","DOIUrl":null,"url":null,"abstract":"Dielectric capacitors with a fast charging/discharging rate, high power density, and long‐term stability are essential components in modern electrical devices. However, miniaturizing and integrating capacitors face a persistent challenge in improving their energy density (Wrec) to satisfy the specifications of advanced electronic systems and applications. In this work, leveraging phase‐field simulations, we judiciously designed a novel lead‐free relaxor ferroelectric material for enhanced energy storage performance, featuring flexible distributed weakly polar endotaxial nanostructures (ENs) embedded within a strongly polar fluctuation matrix. The matrix contributes to substantially enhanced polarization under an external electric field, and the randomly dispersed ENs effectively optimize breakdown phase proportion and provide a strong restoring force, which are advantageous in bolstering breakdown strength and minimizing hysteresis. Remarkably, this relaxor ferroelectric system incorporating ENs achieves an exceptionally high Wrec value of 10.3 J/cm3, accompanied by a large energy storage efficiency (η) of 85.4%. This work introduces a promising avenue for designing new relaxor materials capable of capacitive energy storage with exceptional performance characteristics.","PeriodicalId":506315,"journal":{"name":"SusMat","volume":"3 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SusMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sus2.174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Dielectric capacitors with a fast charging/discharging rate, high power density, and long‐term stability are essential components in modern electrical devices. However, miniaturizing and integrating capacitors face a persistent challenge in improving their energy density (Wrec) to satisfy the specifications of advanced electronic systems and applications. In this work, leveraging phase‐field simulations, we judiciously designed a novel lead‐free relaxor ferroelectric material for enhanced energy storage performance, featuring flexible distributed weakly polar endotaxial nanostructures (ENs) embedded within a strongly polar fluctuation matrix. The matrix contributes to substantially enhanced polarization under an external electric field, and the randomly dispersed ENs effectively optimize breakdown phase proportion and provide a strong restoring force, which are advantageous in bolstering breakdown strength and minimizing hysteresis. Remarkably, this relaxor ferroelectric system incorporating ENs achieves an exceptionally high Wrec value of 10.3 J/cm3, accompanied by a large energy storage efficiency (η) of 85.4%. This work introduces a promising avenue for designing new relaxor materials capable of capacitive energy storage with exceptional performance characteristics.