{"title":"Machine Learning vs Software Vulnerability Detection: Applicability Analysis and Conceptual System Synthesis","authors":"N. Leonov, M. Buinevich","doi":"10.31854/1813-324x-2023-9-6-83-94","DOIUrl":null,"url":null,"abstract":"The article is devoted to the searching for vulnerabilities in software problem, as well as the possibilities of application of such a promising area in information technology as machine learning. For this purpose, a review of scientific publications in this area from Russian and foreign citation databases is made. A comparative analysis of the review's results was made according to the following criteria: publication year, application field, idea, solved problem of machine learning, degree of realization of its models and methods; for each criterion basic conclusions were drawn. As a result, 7 principles of building a new conceptual system of searching for vulnerabilities in software with the help of machine learning are proposed, the short meaning of which is as follows: program's multilateral study, combination of known methods, the use of machine learning in each method and algorithm of its management, the possibility of correcting the expert's work, storing information in a database and its synchronization with external, advisory nature of the found vulnerabilities; single software application usage. Based on the stated principles, a graphical scheme of such a system has been developed.","PeriodicalId":298883,"journal":{"name":"Proceedings of Telecommunication Universities","volume":"20 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Telecommunication Universities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31854/1813-324x-2023-9-6-83-94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The article is devoted to the searching for vulnerabilities in software problem, as well as the possibilities of application of such a promising area in information technology as machine learning. For this purpose, a review of scientific publications in this area from Russian and foreign citation databases is made. A comparative analysis of the review's results was made according to the following criteria: publication year, application field, idea, solved problem of machine learning, degree of realization of its models and methods; for each criterion basic conclusions were drawn. As a result, 7 principles of building a new conceptual system of searching for vulnerabilities in software with the help of machine learning are proposed, the short meaning of which is as follows: program's multilateral study, combination of known methods, the use of machine learning in each method and algorithm of its management, the possibility of correcting the expert's work, storing information in a database and its synchronization with external, advisory nature of the found vulnerabilities; single software application usage. Based on the stated principles, a graphical scheme of such a system has been developed.