Analysis of Seven Human Respiratory Coronavirus (CoV) S Proteins from a Bioinformatics Approach

Q4 Biochemistry, Genetics and Molecular Biology
Leonard Whye, Kit Lim, Hui Chung
{"title":"Analysis of Seven Human Respiratory Coronavirus (CoV) S Proteins from a Bioinformatics Approach","authors":"Leonard Whye, Kit Lim, Hui Chung","doi":"10.33736/bjrst.5853.2023","DOIUrl":null,"url":null,"abstract":"The coronavirus disease 2019 (COVID-19) has caused a huge pandemic repercussion across the globe and it is mainly contributed by the human severe acute respiratory syndrome coronavirus (SARS-CoV-2). There are seven human respiratory coronaviruses identified to date, namely HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1, MERS-CoV, SARS-CoV and SARS-CoV-2. A recently published bioinformatic human CoV comparison only covered four human CoV. Therefore, in this study, a bioinformatics approach-based analyses route was taken to dissect the S proteins of all the available (seven) human respiratory coronaviruses publicly available in the GenBank database. The antigenic epitope amount is postulated to be the most accurate bioindicator among all in determining the severity of a particular human respiratory coronavirus. Other powerful bioinformatic indicators are global similarity index, maximum likelihood phylogenetic analysis as well as domain analysis. The data generated in this study can be channelled to the vaccine and antiviral drug development to combat the current and future spread of the human respiratory coronaviruses.","PeriodicalId":32107,"journal":{"name":"Borneo Journal of Resource Science and Technology","volume":"11 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Borneo Journal of Resource Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33736/bjrst.5853.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The coronavirus disease 2019 (COVID-19) has caused a huge pandemic repercussion across the globe and it is mainly contributed by the human severe acute respiratory syndrome coronavirus (SARS-CoV-2). There are seven human respiratory coronaviruses identified to date, namely HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1, MERS-CoV, SARS-CoV and SARS-CoV-2. A recently published bioinformatic human CoV comparison only covered four human CoV. Therefore, in this study, a bioinformatics approach-based analyses route was taken to dissect the S proteins of all the available (seven) human respiratory coronaviruses publicly available in the GenBank database. The antigenic epitope amount is postulated to be the most accurate bioindicator among all in determining the severity of a particular human respiratory coronavirus. Other powerful bioinformatic indicators are global similarity index, maximum likelihood phylogenetic analysis as well as domain analysis. The data generated in this study can be channelled to the vaccine and antiviral drug development to combat the current and future spread of the human respiratory coronaviruses.
从生物信息学方法分析七种人类呼吸道冠状病毒 (CoV) S 蛋白
2019 年冠状病毒病(COVID-19)在全球范围内引起了巨大的流行反响,它主要是由人类严重急性呼吸系统综合征冠状病毒(SARS-CoV-2)引起的。迄今已发现七种人类呼吸道冠状病毒,即 HCoV-229E、HCoV-NL63、HCoV-OC43、HCoV-HKU1、MERS-CoV、SARS-CoV 和 SARS-CoV-2。最近发表的生物信息学人类 CoV 比较只涵盖了四种人类 CoV。因此,本研究采用基于生物信息学方法的分析途径,对 GenBank 数据库中公开的所有(七种)人类呼吸道冠状病毒的 S 蛋白进行了剖析。据推测,抗原表位量是确定特定人类呼吸道冠状病毒严重程度的最准确的生物指标。其他强大的生物信息学指标包括全局相似性指数、最大似然系统发生分析和域分析。这项研究产生的数据可用于疫苗和抗病毒药物的开发,以应对当前和未来人类呼吸道冠状病毒的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Borneo Journal of Resource Science and Technology
Borneo Journal of Resource Science and Technology Agricultural and Biological Sciences-Forestry
CiteScore
0.70
自引率
0.00%
发文量
16
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信