Predicting the Maximum Load Capacity of Circular RC Columns Confined with Fibre-Reinforced Polymer (FRP) Using Machine Learning Model

Indra Prakash, Thuy Anh Nguyen
{"title":"Predicting the Maximum Load Capacity of Circular RC Columns Confined with Fibre-Reinforced Polymer (FRP) Using Machine Learning Model","authors":"Indra Prakash, Thuy Anh Nguyen","doi":"10.58845/jstt.utt.2023.en.3.4.25-43","DOIUrl":null,"url":null,"abstract":"This article conducts an exhaustive investigation into the utilization of machine learning (ML) methods for forecasting the maximum load capacity (MLC) of circular reinforced concrete columns (CRCC) using Fiber-Reinforced Polymer (FRP). Extreme Gradient Boosting (XGB) algorithm is combined with novel metaheuristic algorithms, namely Sailfish Optimizer and Aquila Optimizer, to fine-tune its hyperparameters. The robustness and generalizability of these optimized hyperparameters are ensured through 200 Monte Carlo simulations (MCS). The model is constructed based on a database of 207 experimental results. Its performance is evaluated using three criteria: root mean squared error, mean absolute error, and the coefficient of determination.  This study includes a performance comparison of the XGB4 model with eight other ML models, namely CatBoost (CAT), Gradient Boosting (GB), Hist Gradient Boosting (HGB), default XGB, Light Gradient Boosting (LGB), Linear Regression (LR), and Random Forest (RF). This comparison identifies the most effective model for predicting the MLC of columns. Additionally, this study explores the interpretability of the XGB model by SHAP values. This analysis illuminates the significance and interactions of various input features in predicting the FRP-confined CRCC's MLC. It offers insights into the primary elements influencing structural behavior by displaying a graphical depiction of the impact of specific characteristics on the model's output. This study culminates in developing an interactive Graphical User Interface (GUI) based on the XGB model. This tool allows users to investigate the influence of input parameters on the predicted MLC values, thereby enhancing their understanding and application of the model.","PeriodicalId":117856,"journal":{"name":"Journal of Science and Transport Technology","volume":"16 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Transport Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58845/jstt.utt.2023.en.3.4.25-43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article conducts an exhaustive investigation into the utilization of machine learning (ML) methods for forecasting the maximum load capacity (MLC) of circular reinforced concrete columns (CRCC) using Fiber-Reinforced Polymer (FRP). Extreme Gradient Boosting (XGB) algorithm is combined with novel metaheuristic algorithms, namely Sailfish Optimizer and Aquila Optimizer, to fine-tune its hyperparameters. The robustness and generalizability of these optimized hyperparameters are ensured through 200 Monte Carlo simulations (MCS). The model is constructed based on a database of 207 experimental results. Its performance is evaluated using three criteria: root mean squared error, mean absolute error, and the coefficient of determination.  This study includes a performance comparison of the XGB4 model with eight other ML models, namely CatBoost (CAT), Gradient Boosting (GB), Hist Gradient Boosting (HGB), default XGB, Light Gradient Boosting (LGB), Linear Regression (LR), and Random Forest (RF). This comparison identifies the most effective model for predicting the MLC of columns. Additionally, this study explores the interpretability of the XGB model by SHAP values. This analysis illuminates the significance and interactions of various input features in predicting the FRP-confined CRCC's MLC. It offers insights into the primary elements influencing structural behavior by displaying a graphical depiction of the impact of specific characteristics on the model's output. This study culminates in developing an interactive Graphical User Interface (GUI) based on the XGB model. This tool allows users to investigate the influence of input parameters on the predicted MLC values, thereby enhancing their understanding and application of the model.
利用机器学习模型预测用纤维增强聚合物(FRP)加固的圆形 RC 柱的最大承载能力
本文对利用机器学习(ML)方法预测使用纤维增强聚合物(FRP)的圆形钢筋混凝土柱(CRCC)的最大承载能力(MLC)进行了详尽的研究。极端梯度提升(XGB)算法与新型元启发式算法(即 Sailfish 优化器和 Aquila 优化器)相结合,对其超参数进行了微调。通过 200 次蒙特卡罗模拟(MCS),确保了这些优化超参数的稳健性和通用性。该模型是基于 207 项实验结果的数据库构建的。使用三个标准对其性能进行评估:均方根误差、平均绝对误差和判定系数。 本研究包括 XGB4 模型与其他八个 ML 模型的性能比较,即 CatBoost (CAT)、Gradient Boosting (GB)、Hist Gradient Boosting (HGB)、默认 XGB、Light Gradient Boosting (LGB)、线性回归 (LR) 和随机森林 (RF)。通过比较,确定了预测列 MLC 的最有效模型。此外,本研究还通过 SHAP 值探讨了 XGB 模型的可解释性。该分析揭示了各种输入特征在预测 FRP 密实 CRCC 的 MLC 方面的重要性和相互作用。它通过显示特定特征对模型输出影响的图形描述,深入分析了影响结构行为的主要因素。这项研究的最终成果是基于 XGB 模型开发了一个交互式图形用户界面 (GUI)。通过该工具,用户可以研究输入参数对 MLC 预测值的影响,从而加深对模型的理解和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信