Norm attaining bilinear forms of ${\mathcal L}(^2 d_{*}(1, w)^2)$ at given vectors

Q4 Mathematics
S.G. Kim
{"title":"Norm attaining bilinear forms of ${\\mathcal L}(^2 d_{*}(1, w)^2)$ at given vectors","authors":"S.G. Kim","doi":"10.15421/242313","DOIUrl":null,"url":null,"abstract":"For given unit vectors $x_1, \\cdots, x_n$ of a real Banach space $E,$ we define $$NA({\\mathcal L}(^nE))(x_1, \\cdots, x_n)=\\{T\\in {\\mathcal L}(^nE): |T(x_1, \\cdots, x_n)|=\\|T\\|=1\\},$$ where ${\\mathcal L}(^nE)$ denotes the Banach space of all continuous $n$-linear forms on $E$ endowed with the norm $\\|T\\|=\\sup_{\\|x_k\\|=1, 1\\leq k\\leq n}{|T(x_1, \\ldots, x_n)|}$.In this paper, we classify $NA({\\mathcal L}(^2 d_{*}(1, w)^2))(Z_1, Z_2)$ for unit vectors $Z_1, Z_2\\in d_{*}(1, w)^2,$ where $d_{*}(1, w)^2=\\mathbb{R}^2$ with the norm of weight $0<w<1$ endowed with $\\|(x, y)\\|_{d_*(1, w)}=\\max\\Big\\{|x|, |y|, \\frac{|x|+|y|}{1+w}\\Big\\}$.","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"8 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/242313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

For given unit vectors $x_1, \cdots, x_n$ of a real Banach space $E,$ we define $$NA({\mathcal L}(^nE))(x_1, \cdots, x_n)=\{T\in {\mathcal L}(^nE): |T(x_1, \cdots, x_n)|=\|T\|=1\},$$ where ${\mathcal L}(^nE)$ denotes the Banach space of all continuous $n$-linear forms on $E$ endowed with the norm $\|T\|=\sup_{\|x_k\|=1, 1\leq k\leq n}{|T(x_1, \ldots, x_n)|}$.In this paper, we classify $NA({\mathcal L}(^2 d_{*}(1, w)^2))(Z_1, Z_2)$ for unit vectors $Z_1, Z_2\in d_{*}(1, w)^2,$ where $d_{*}(1, w)^2=\mathbb{R}^2$ with the norm of weight $0
在给定向量处获得 ${\mathcal L}(^2 d_{*}(1, w)^2)$的双线性形式的规范
对于实巴纳赫空间 $E 的给定单位向量 $x_1, \cdots, x_n$,我们定义 $$NA({\mathcal L}(^nE))(x_1, \cdots, x_n)=\{T\in {\mathcal L}(^nE):|T(x_1,\cdots,x_n)|=\|T\|=1\},$$其中 ${\mathcal L}(^nE)$ 表示 $E$ 上所有连续 $n$ 线性形式的巴拿赫空间,禀赋规范为 $\|T\|=\sup_{|x_k\|=1,1\leq k\leq n}{|T(x_1,\ldots,x_n)|}$。在本文中,我们将单位向量 $Z_1, Z_2\in d_{*}(1, w)^2,$ 中的 $NA({\mathcal L}(^2 d_{*}(1, w)^2))(Z_1, Z_2)$ 分类,其中 $d_{*}(1、w)^2=\mathbb{R}^2$,权重为 $0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
8
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信