A Comparative Study of Embedded Learning Models IoT-based for real time Mask Detection

Mohamed Amine Meddaoui, M. Erritali, Françoise Sailhan
{"title":"A Comparative Study of Embedded Learning Models IoT-based for real time Mask Detection","authors":"Mohamed Amine Meddaoui, M. Erritali, Françoise Sailhan","doi":"10.47679/ijasca.v3i2.49","DOIUrl":null,"url":null,"abstract":"Following the outbreak of the coronavirus, many preventive measures are implemented to slow down the transmission of the virus. Amongst others, facemask detection is a key innovative technology that allows the identificationof the number of individuals wearing face masks. In this regard, this paperprovides a comparative study of several machine learning and deep learningalgorithms (e.g., SVM, RNN, Mask-RCNN, LSTM, CNN, Auto-Encoder,GAN, U-Net GAN) that support mask detection.","PeriodicalId":507177,"journal":{"name":"International Journal of Advanced Science and Computer Applications","volume":"19 28","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Science and Computer Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47679/ijasca.v3i2.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Following the outbreak of the coronavirus, many preventive measures are implemented to slow down the transmission of the virus. Amongst others, facemask detection is a key innovative technology that allows the identificationof the number of individuals wearing face masks. In this regard, this paperprovides a comparative study of several machine learning and deep learningalgorithms (e.g., SVM, RNN, Mask-RCNN, LSTM, CNN, Auto-Encoder,GAN, U-Net GAN) that support mask detection.
基于嵌入式学习模型的物联网实时掩码检测比较研究
冠状病毒爆发后,为减缓病毒传播,采取了许多预防措施。其中,口罩检测是一项关键的创新技术,它可以识别佩戴口罩的人数。为此,本文对支持口罩检测的几种机器学习和深度学习算法(如 SVM、RNN、Mask-RCNN、LSTM、CNN、Auto-Encoder、GAN、U-Net GAN)进行了比较研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信