{"title":"On the domains of convergence of the branched continued fraction expansion of ratio $H_4(a,d+1;c,d;\\mathbf{z})/H_4(a,d+2;c,d+1;\\mathbf{z})$","authors":"R. Dmytryshyn, I.-A.V. Lutsiv, O.S. Bodnar","doi":"10.15421/242311","DOIUrl":null,"url":null,"abstract":"The paper considers the problem of establishing the convergence criteria of the branched continued fraction expansion of the ratio of Horn's hypergeometric functions $H_4$. To solve it, the technique of expanding the domain of convergence of the branched continued fraction from the known small domain of convergence to a wider domain of convergence is used. For the real and complex parameters of the Horn hypergeometric function $H_4$, a number of convergence criteria of the branched continued fraction expansion under certain conditions to its coefficients in various unbounded domains of the space have been established.","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"68 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/242311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
The paper considers the problem of establishing the convergence criteria of the branched continued fraction expansion of the ratio of Horn's hypergeometric functions $H_4$. To solve it, the technique of expanding the domain of convergence of the branched continued fraction from the known small domain of convergence to a wider domain of convergence is used. For the real and complex parameters of the Horn hypergeometric function $H_4$, a number of convergence criteria of the branched continued fraction expansion under certain conditions to its coefficients in various unbounded domains of the space have been established.