On the domains of convergence of the branched continued fraction expansion of ratio $H_4(a,d+1;c,d;\mathbf{z})/H_4(a,d+2;c,d+1;\mathbf{z})$

Q4 Mathematics
R. Dmytryshyn, I.-A.V. Lutsiv, O.S. Bodnar
{"title":"On the domains of convergence of the branched continued fraction expansion of ratio $H_4(a,d+1;c,d;\\mathbf{z})/H_4(a,d+2;c,d+1;\\mathbf{z})$","authors":"R. Dmytryshyn, I.-A.V. Lutsiv, O.S. Bodnar","doi":"10.15421/242311","DOIUrl":null,"url":null,"abstract":"The paper considers the problem of establishing the convergence criteria of the branched continued fraction expansion of the ratio of Horn's hypergeometric functions $H_4$. To solve it, the technique of expanding the domain of convergence of the branched continued fraction from the known small domain of convergence to a wider domain of convergence is used. For the real and complex parameters of the Horn hypergeometric function $H_4$, a number of convergence criteria of the branched continued fraction expansion under certain conditions to its coefficients in various unbounded domains of the space have been established.","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"68 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/242311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The paper considers the problem of establishing the convergence criteria of the branched continued fraction expansion of the ratio of Horn's hypergeometric functions $H_4$. To solve it, the technique of expanding the domain of convergence of the branched continued fraction from the known small domain of convergence to a wider domain of convergence is used. For the real and complex parameters of the Horn hypergeometric function $H_4$, a number of convergence criteria of the branched continued fraction expansion under certain conditions to its coefficients in various unbounded domains of the space have been established.
论比率 $H_4(a,d+1;c,d;\mathbf{z})/H_4(a,d+2;c,d+1;\mathbf{z})$ 的支链续分展开的收敛域
本文探讨了如何建立霍恩超几何函数 $H_4$ 的比值的分支续分展开的收敛标准问题。为了解决这个问题,采用了将支化续分数的收敛域从已知的小收敛域扩展到更宽收敛域的技术。对于霍恩超几何函数 $H_4$ 的实参数和复参数,已经建立了支链续分数扩展在一定条件下对其系数在各种无界空间域的收敛准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
8
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信