Tests for skewness parameter of skew log Laplace distribution

Q4 Mathematics
Pradnya P. Khandeparkar, Vaijayanti Dixit
{"title":"Tests for skewness parameter of skew log Laplace distribution","authors":"Pradnya P. Khandeparkar, Vaijayanti Dixit","doi":"10.3233/mas-221423","DOIUrl":null,"url":null,"abstract":"Laplace probability density function with additional shape parameter that regulates the degree of skewness is a skew Laplace distribution. The various forms of skew Laplace distribution are found in the literature, the distributions defined by Mc Gill (1962), Holla and Bhattacharya (1968), Lingappaiah (1988), Fernandez and Steel (1998). The skew log Laplace distribution is the probability distribution of a random variable whose logarithm follows a skew Laplace distribution. In this paper, the classical optimum tests for skewness parameter of skew log Laplace distribution (SLLD) derived from Lingappaiah (1988) distribution are discussed. Uniformly most powerful test, uniformly most powerful unbiased test and Wald’s sequential probability ratio test for skewness parameter are compared. The exact likelihood ratio test and Neyman structure test for testing skewness parameter when scale parameter is known are derived. Finally, the underreported income of Road Transport Company is analysed on the basis of the tests derived in this paper.","PeriodicalId":35000,"journal":{"name":"Model Assisted Statistics and Applications","volume":"46 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Model Assisted Statistics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mas-221423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Laplace probability density function with additional shape parameter that regulates the degree of skewness is a skew Laplace distribution. The various forms of skew Laplace distribution are found in the literature, the distributions defined by Mc Gill (1962), Holla and Bhattacharya (1968), Lingappaiah (1988), Fernandez and Steel (1998). The skew log Laplace distribution is the probability distribution of a random variable whose logarithm follows a skew Laplace distribution. In this paper, the classical optimum tests for skewness parameter of skew log Laplace distribution (SLLD) derived from Lingappaiah (1988) distribution are discussed. Uniformly most powerful test, uniformly most powerful unbiased test and Wald’s sequential probability ratio test for skewness parameter are compared. The exact likelihood ratio test and Neyman structure test for testing skewness parameter when scale parameter is known are derived. Finally, the underreported income of Road Transport Company is analysed on the basis of the tests derived in this paper.
倾斜对数拉普拉斯分布的倾斜参数测试
拉普拉斯概率密度函数带有调节偏斜程度的附加形状参数,这就是偏斜拉普拉斯分布。偏斜拉普拉斯分布的形式多种多样,文献中有 Mc Gill (1962)、Holla 和 Bhattacharya (1968)、Lingappaiah (1988)、Fernandez 和 Steel (1998) 所定义的分布。偏斜对数拉普拉斯分布是指对数服从偏斜拉普拉斯分布的随机变量的概率分布。本文讨论了由 Lingappaiah(1988)分布导出的偏斜对拉普拉斯分布(SLLD)偏斜参数的经典最优检验。比较了斜度参数的均匀最强检验、均匀最强无偏检验和 Wald 连续似然比检验。得出了在尺度参数已知的情况下检验偏度参数的精确似然比检验和奈曼结构检验。最后,根据本文得出的检验方法对道路运输公司的少报收入进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Model Assisted Statistics and Applications
Model Assisted Statistics and Applications Mathematics-Applied Mathematics
CiteScore
1.00
自引率
0.00%
发文量
26
期刊介绍: Model Assisted Statistics and Applications is a peer reviewed international journal. Model Assisted Statistics means an improvement of inference and analysis by use of correlated information, or an underlying theoretical or design model. This might be the design, adjustment, estimation, or analytical phase of statistical project. This information may be survey generated or coming from an independent source. Original papers in the field of sampling theory, econometrics, time-series, design of experiments, and multivariate analysis will be preferred. Papers of both applied and theoretical topics are acceptable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信