Bayesian Hidden Markov Modelling of Blood Type Distribution for Covid-19 Cases Using Poisson Distribution

Johnson Joseph Kwabina Arhinful, Okyere Gabriel Asare, Adebanji Atinuke Olusola, Owusu -Ansah Emmanuel Degraft Johnson, Burnett Tetteh Accam
{"title":"Bayesian Hidden Markov Modelling of Blood Type Distribution for Covid-19 Cases Using Poisson Distribution","authors":"Johnson Joseph Kwabina Arhinful, Okyere Gabriel Asare, Adebanji Atinuke Olusola, Owusu -Ansah Emmanuel Degraft Johnson, Burnett Tetteh Accam","doi":"10.5539/ijsp.v12n6p34","DOIUrl":null,"url":null,"abstract":"This paper proposes a model to describe the blood types distribution of new Coronavirus (COVID-19) cases using the Bayesian Poisson - Hidden Markov Model (BP-HMM). With the help of the Gibbs sampler algorithm, using OpenBugs, the study first identifies the number of hidden states fitting European (EU) and African (AF) data sets of COVID-19 cases by blood type frequency. The study then compares the state-dependent mean of infection within and across the two geographical areas. The study findings show that the number of hidden states and infection rate within and across the two geographical areas differ according to blood type.","PeriodicalId":89781,"journal":{"name":"International journal of statistics and probability","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of statistics and probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/ijsp.v12n6p34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a model to describe the blood types distribution of new Coronavirus (COVID-19) cases using the Bayesian Poisson - Hidden Markov Model (BP-HMM). With the help of the Gibbs sampler algorithm, using OpenBugs, the study first identifies the number of hidden states fitting European (EU) and African (AF) data sets of COVID-19 cases by blood type frequency. The study then compares the state-dependent mean of infection within and across the two geographical areas. The study findings show that the number of hidden states and infection rate within and across the two geographical areas differ according to blood type.
利用泊松分布建立 Covid-19 病例血型分布的贝叶斯隐马尔科夫模型
本文提出了一种使用贝叶斯泊松-隐马尔可夫模型(BP-HMM)描述新发冠状病毒(COVID-19)病例血型分布的模型。在吉布斯采样器算法和 OpenBugs 的帮助下,该研究首先确定了按血型频率拟合 COVID-19 病例的欧洲(EU)和非洲(AF)数据集的隐藏状态数。然后,研究比较了两个地理区域内和区域间与状态相关的感染平均值。研究结果表明,两个地理区域内和区域间的隐藏状态数量和感染率因血型而异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信