{"title":"A step-by-step parameter-adaptive FMD method and its application in fault diagnosis","authors":"Xiangrong Wang, Congming Li, Hongying Tian, Xiaoyan Xiong","doi":"10.1088/1361-6501/ad197b","DOIUrl":null,"url":null,"abstract":"A newly proposed method, Feature Mode Decomposition (FMD), can effectively enhance signal features while decomposing the signal. This feature is beneficial for analyzing weak vibration signals. However, input parameters (the segment number K, the filter length L, and the mode number n,) significantly influence the decomposition performance and efficiency. Based on the analysis of filter properties and decomposition performance of the FMD method, a step-by-step parameter-adaptive FMD method is proposed. First, parameters K and L are optimized; Secondly, parameter n is determined. In addition, a comprehensive evaluation indicator, the ratio of sample entropy and ensemble kurtosis (SEKR) is constructed considering both the periodic impact characteristics of fault signals and the noise intensity to created objective functions for each step. Compared with the methods of Variational Mode Decomposition (VMD) spectral kurtosis method and the wavelet packet(WP) decomposition, the proposed method exhibits better decomposition performance: the amplitude has increased by nearly 10 times for the simulation data and 6 times for the actual engineering data; and three evaluation factors (the crest factor, the impulse factor, and the kurtosis) have higher value. Therefore, it can be concluded that the proposed method has better superiority in identifying weak periodic fault features.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":"269 1‐4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad197b","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A newly proposed method, Feature Mode Decomposition (FMD), can effectively enhance signal features while decomposing the signal. This feature is beneficial for analyzing weak vibration signals. However, input parameters (the segment number K, the filter length L, and the mode number n,) significantly influence the decomposition performance and efficiency. Based on the analysis of filter properties and decomposition performance of the FMD method, a step-by-step parameter-adaptive FMD method is proposed. First, parameters K and L are optimized; Secondly, parameter n is determined. In addition, a comprehensive evaluation indicator, the ratio of sample entropy and ensemble kurtosis (SEKR) is constructed considering both the periodic impact characteristics of fault signals and the noise intensity to created objective functions for each step. Compared with the methods of Variational Mode Decomposition (VMD) spectral kurtosis method and the wavelet packet(WP) decomposition, the proposed method exhibits better decomposition performance: the amplitude has increased by nearly 10 times for the simulation data and 6 times for the actual engineering data; and three evaluation factors (the crest factor, the impulse factor, and the kurtosis) have higher value. Therefore, it can be concluded that the proposed method has better superiority in identifying weak periodic fault features.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.