{"title":"AIR-CNN: A Lightweight Automatic Image Rectification CNN Used for Barrel Distortion","authors":"Can Zhou, Can Zhou, Hongqiu Zhu, Tianhao Liu","doi":"10.1088/1361-6501/ad1979","DOIUrl":null,"url":null,"abstract":"Barrel distortions often exist in images captured by wide-angle lenses, and the presence of barrel distortions reduces the label-making accuracy of algorithms and the precision rate of final target detection and semantic recognition. To reduce the interference of barrel distortions on imaging, we have proposed a lightweight image rectification network AIR-CNN for barrel distortion. The network is based on a parameter sharing (PS) convolutional neural network structure, which is trained on the distorted image dataset to predict the pixel displacement field between the distorted image and the rectified image, and finally restores the rectified image based on the predicted pixel displacement field. The experimental results show that the AIR-CNN can greatly reduce the number of network parameters through the parameter sharing mechanism and implicitly learns the texture features by asymmetric convolution (AC) kernels to obtain higher rectification accuracy at a lower computational cost, and automatically obtain the distortion parameters of the camera without special calibration methods. The AIR-CNN outperforms previous image rectification methods in both intuitive and quantitative comparisons (EPE, PSNR, NRMSE, SSIM).","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":"19 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad1979","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Barrel distortions often exist in images captured by wide-angle lenses, and the presence of barrel distortions reduces the label-making accuracy of algorithms and the precision rate of final target detection and semantic recognition. To reduce the interference of barrel distortions on imaging, we have proposed a lightweight image rectification network AIR-CNN for barrel distortion. The network is based on a parameter sharing (PS) convolutional neural network structure, which is trained on the distorted image dataset to predict the pixel displacement field between the distorted image and the rectified image, and finally restores the rectified image based on the predicted pixel displacement field. The experimental results show that the AIR-CNN can greatly reduce the number of network parameters through the parameter sharing mechanism and implicitly learns the texture features by asymmetric convolution (AC) kernels to obtain higher rectification accuracy at a lower computational cost, and automatically obtain the distortion parameters of the camera without special calibration methods. The AIR-CNN outperforms previous image rectification methods in both intuitive and quantitative comparisons (EPE, PSNR, NRMSE, SSIM).
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.