Koo–Kleinstreuer–Li conductivity model for the thermal enhancement in the water-based nanofluids over a stretching sheet considering dissipative heat effects
{"title":"Koo–Kleinstreuer–Li conductivity model for the thermal enhancement in the water-based nanofluids over a stretching sheet considering dissipative heat effects","authors":"R. K. Sahoo, S. R. Mishra","doi":"10.1142/s0217984924501549","DOIUrl":null,"url":null,"abstract":"Today’s need of the growing industries is to get better products with long life which depends upon the production processes. This requires enhanced thermal properties of the fluid as well as the components surrounding to it. Therefore, this study reveals the flow of several water-based nanofluids past an expanding sheet. Oxide nanoparticles, such as Al2O3 and CuO, are considered in the base liquid water to show their behavior on the flow phenomena. Further, dissipative heat properties due to magnetization, i.e. Joule and viscous dissipation enrich the study. The novelty of this study is the consideration of KKL “(Koo–Kleinstreuer–Li) correlation” for the conductivity and viscosity plays its important role in which the influence of Brownian activity is vital. The utilization of similarity rules is beneficial for the transformation of the governing equations into non-dimensional form. Further, the shooting-based Runge–Kutta technique is useful for the solution of these set of equations. The characterization of diversified components likely the particle concentration, magnetic and buoyancy parameter on the velocity distribution along with the Eckert number, and thermal radiation on the energy profile is obtained and deliberated briefly.","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"58 37","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924501549","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Today’s need of the growing industries is to get better products with long life which depends upon the production processes. This requires enhanced thermal properties of the fluid as well as the components surrounding to it. Therefore, this study reveals the flow of several water-based nanofluids past an expanding sheet. Oxide nanoparticles, such as Al2O3 and CuO, are considered in the base liquid water to show their behavior on the flow phenomena. Further, dissipative heat properties due to magnetization, i.e. Joule and viscous dissipation enrich the study. The novelty of this study is the consideration of KKL “(Koo–Kleinstreuer–Li) correlation” for the conductivity and viscosity plays its important role in which the influence of Brownian activity is vital. The utilization of similarity rules is beneficial for the transformation of the governing equations into non-dimensional form. Further, the shooting-based Runge–Kutta technique is useful for the solution of these set of equations. The characterization of diversified components likely the particle concentration, magnetic and buoyancy parameter on the velocity distribution along with the Eckert number, and thermal radiation on the energy profile is obtained and deliberated briefly.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.