{"title":"An Intelligent Control Method for Servo Motor Based on Reinforcement Learning","authors":"Depeng Gao, Shuai Wang, Yuwei Yang, Haifei Zhang, Hao Chen, Xiangxiang Mei, Shuxi Chen, Jianlin Qiu","doi":"10.3390/a17010014","DOIUrl":null,"url":null,"abstract":"Servo motors play an important role in automation equipment and have been used in several manufacturing fields. However, the commonly used control methods need their parameters to be set manually, which is rather difficult, and this means that these methods generally cannot adapt to changes in operation conditions. Therefore, in this study, we propose an intelligent control method for a servo motor based on reinforcement learning and that can train an agent to produce a duty cycle according to the servo error between the current state and the target speed or torque. The proposed method can adjust its control strategy online to reduce the servo error caused by a change in operation conditions. We verify its performance on three different servo motors and control tasks. The experimental results show that the proposed method can achieve smaller servo errors than others in most cases.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"55 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a17010014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Servo motors play an important role in automation equipment and have been used in several manufacturing fields. However, the commonly used control methods need their parameters to be set manually, which is rather difficult, and this means that these methods generally cannot adapt to changes in operation conditions. Therefore, in this study, we propose an intelligent control method for a servo motor based on reinforcement learning and that can train an agent to produce a duty cycle according to the servo error between the current state and the target speed or torque. The proposed method can adjust its control strategy online to reduce the servo error caused by a change in operation conditions. We verify its performance on three different servo motors and control tasks. The experimental results show that the proposed method can achieve smaller servo errors than others in most cases.