Batch correction of single cell sequencing data via an autoencoder architecture

Reut Danino, I. Nachman, R. Sharan
{"title":"Batch correction of single cell sequencing data via an autoencoder architecture","authors":"Reut Danino, I. Nachman, R. Sharan","doi":"10.1093/bioadv/vbad186","DOIUrl":null,"url":null,"abstract":"Technical differences between gene expression sequencing experiments can cause variations in the data in the form of batch effect biases. These do not represent true biological variations between samples and can lead to false conclusions, or hinder the ability to integrate multiple datasets. Since there is a growing need for the joint analysis of single cell sequencing datasets from different sources, there is also a need to correct the resulting batch effects while maintaining the true biological variations in the data. Here we develop a semi-supervised deep learning architecture called Autoencoder-based Batch Correction (ABC) for integrating single cell sequencing datasets. Our method removes batch effects through a guided process of data compression using supervised cell type classifier branches for biological signal retention. It aligns the different batches using an adversarial training approach. We comprehensively evaluate the performance of our method using four single cell sequencing datasets and multiple measures for batch effect removal and biological variation conservation. ABC outperforms ten state-of-art methods for this task including Seurat, scGen, ComBat, scanorama, scVI, scANVI, AutoClass, Harmony, scDREAMER and CLEAR, correcting various types of batch effects while preserving intricate biological variations.","PeriodicalId":505477,"journal":{"name":"Bioinformatics Advances","volume":"41 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbad186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Technical differences between gene expression sequencing experiments can cause variations in the data in the form of batch effect biases. These do not represent true biological variations between samples and can lead to false conclusions, or hinder the ability to integrate multiple datasets. Since there is a growing need for the joint analysis of single cell sequencing datasets from different sources, there is also a need to correct the resulting batch effects while maintaining the true biological variations in the data. Here we develop a semi-supervised deep learning architecture called Autoencoder-based Batch Correction (ABC) for integrating single cell sequencing datasets. Our method removes batch effects through a guided process of data compression using supervised cell type classifier branches for biological signal retention. It aligns the different batches using an adversarial training approach. We comprehensively evaluate the performance of our method using four single cell sequencing datasets and multiple measures for batch effect removal and biological variation conservation. ABC outperforms ten state-of-art methods for this task including Seurat, scGen, ComBat, scanorama, scVI, scANVI, AutoClass, Harmony, scDREAMER and CLEAR, correcting various types of batch effects while preserving intricate biological variations.
通过自动编码器架构批量校正单细胞测序数据
基因表达测序实验之间的技术差异会导致批次效应偏差形式的数据变化。这些偏差并不代表样本间真实的生物变异,可能导致错误的结论,或阻碍整合多个数据集的能力。由于对来自不同来源的单细胞测序数据集进行联合分析的需求日益增长,因此也需要在保持数据中真实生物变化的同时纠正由此产生的批次效应。在此,我们开发了一种名为基于自动编码器的批量校正(ABC)的半监督深度学习架构,用于整合单细胞测序数据集。我们的方法通过使用监督细胞类型分类器分支进行数据压缩的引导过程来消除批次效应,以保留生物信号。它使用对抗训练方法对不同批次进行对齐。我们使用四个单细胞测序数据集以及批次效应去除和生物变异保留的多种测量方法,全面评估了我们方法的性能。在这项任务中,ABC 的表现优于十种最先进的方法,包括 Seurat、scGen、ComBat、scanorama、scVI、scANVI、AutoClass、Harmony、scDREAMER 和 CLEAR,在纠正各种批次效应的同时保留了复杂的生物变异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信