Potential therapeutic applications of targeting signal-transducing adaptor protein-2 in autoimmune diseases

Yuto Sasaki, Shoya Kawahara, Y. Sekine, J. Kashiwakura, K. Oritani, T. Matsuda
{"title":"Potential therapeutic applications of targeting signal-transducing adaptor protein-2 in autoimmune diseases","authors":"Yuto Sasaki, Shoya Kawahara, Y. Sekine, J. Kashiwakura, K. Oritani, T. Matsuda","doi":"10.37349/ei.2023.00125","DOIUrl":null,"url":null,"abstract":"Adaptor proteins are involved in various immune responses via the modulation of many signaling pathways. Signal-transducing adaptor protein-2 (STAP-2) is an adaptor protein that contains typical domains such as the pleckstrin homology (PH) domain, Src homology domain, and a proline-rich region from the N-terminal region. In T cells, STAP-2 positively regulates T cell receptor (TCR)-mediated signaling by associating with CD3ζ immunoreceptor tyrosine-based activation motifs (ITAMs) and lymphocyte-specific protein tyrosine kinase (LCK). Therefore, a peptide that inhibits the interaction between STAP-2 and CD3ζ ITAMs is likely to suppress TCR-mediated T cell activation, as well as T cell-mediated diseases. As expected, the peptide successfully inhibited the STAP-2/CD3ζ ITAM interaction and suppressed TCR-mediated signaling, cell proliferation, and interleukin (IL)-2 production in human/murine T cells. Furthermore, this inhibitor suppressed the pathogenesis of experimental autoimmune encephalomyelitis (EAE), which is widely recognized as a mouse model of multiple sclerosis, via the downregulation of T cell activation and infiltration of T helper (Th) 1/Th17 cells. These results suggest a new strategy for the treatment of multiple sclerosis and other immune diseases.","PeriodicalId":93552,"journal":{"name":"Exploration of immunology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration of immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37349/ei.2023.00125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Adaptor proteins are involved in various immune responses via the modulation of many signaling pathways. Signal-transducing adaptor protein-2 (STAP-2) is an adaptor protein that contains typical domains such as the pleckstrin homology (PH) domain, Src homology domain, and a proline-rich region from the N-terminal region. In T cells, STAP-2 positively regulates T cell receptor (TCR)-mediated signaling by associating with CD3ζ immunoreceptor tyrosine-based activation motifs (ITAMs) and lymphocyte-specific protein tyrosine kinase (LCK). Therefore, a peptide that inhibits the interaction between STAP-2 and CD3ζ ITAMs is likely to suppress TCR-mediated T cell activation, as well as T cell-mediated diseases. As expected, the peptide successfully inhibited the STAP-2/CD3ζ ITAM interaction and suppressed TCR-mediated signaling, cell proliferation, and interleukin (IL)-2 production in human/murine T cells. Furthermore, this inhibitor suppressed the pathogenesis of experimental autoimmune encephalomyelitis (EAE), which is widely recognized as a mouse model of multiple sclerosis, via the downregulation of T cell activation and infiltration of T helper (Th) 1/Th17 cells. These results suggest a new strategy for the treatment of multiple sclerosis and other immune diseases.
靶向信号转导适配蛋白-2在自身免疫性疾病中的潜在治疗应用
适配蛋白通过调节多种信号通路参与各种免疫反应。信号转导适配蛋白-2(STAP-2)是一种适配蛋白,含有典型的结构域,如pleckstrin homology(PH)结构域、Src同源结构域和N端富含脯氨酸的区域。在 T 细胞中,STAP-2 通过与 CD3ζ 免疫受体酪氨酸基激活基序(ITAMs)和淋巴细胞特异性蛋白酪氨酸激酶(LCK)结合,积极调节 T 细胞受体(TCR)介导的信号转导。因此,抑制 STAP-2 与 CD3ζ ITAMs 之间相互作用的多肽可能会抑制 TCR 介导的 T 细胞活化以及 T 细胞介导的疾病。不出所料,该多肽成功抑制了 STAP-2/CD3ζ ITAM 的相互作用,并抑制了人/鼠 T 细胞中 TCR 介导的信号传导、细胞增殖和白细胞介素(IL)-2 的产生。此外,这种抑制剂还通过下调 T 细胞活化和 T 辅助细胞(Th)1/Th17 的浸润,抑制了实验性自身免疫性脑脊髓炎(EAE)的发病机制,EAE 是公认的多发性硬化症小鼠模型。这些结果为治疗多发性硬化症和其他免疫性疾病提供了一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信