Evaluation of the Possibility to Improve the Scratch Resistance of the AZ91 Alloy by Applying a Coating

IF 0.6 Q4 METALLURGY & METALLURGICAL ENGINEERING
M. Mróz, S. Olszewska, P. Rąb
{"title":"Evaluation of the Possibility to Improve the Scratch Resistance of the AZ91 Alloy by Applying a Coating","authors":"M. Mróz, S. Olszewska, P. Rąb","doi":"10.24425/afe.2023.146690","DOIUrl":null,"url":null,"abstract":"This paper presents the possibility of improving the scratch resistance of the AZ91 magnesium alloy by applying a WCCoCr coating using the Air Plasma Spraying (APS) method. The coating thickness ranged from 140 to 160  m. Microstructural studies of the AZ91 magnesium alloy were performed. The chemical composition of the WCCoCr powder was investigated. The quality of the bond at the substrate–coating interface was assessed and a microanalysis of the chemical composition of the coating was conducted. The scratch resistance of the AZ91 alloy and the WCCoCr coating was determined. The scratch resistance of the WCCoCr powder-based coating is much higher than the AZ91 alloy, as confirmed by scratch geometry measurements. The scratch width in the coating was almost three times smaller compared to the scratch in the substrate. Observations of the substrate–coating interface in the scratch area indicate no discontinuities. The absence of microcracks and delamination at the transition of the scratch from the substrate to the coating indicates good adhesion. On the basis of the study, it was found that there was great potential to use the WCCoCr powder coating to improve the abrasion resistance of castings made from the AZ91 alloy.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"15 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Foundry Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/afe.2023.146690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the possibility of improving the scratch resistance of the AZ91 magnesium alloy by applying a WCCoCr coating using the Air Plasma Spraying (APS) method. The coating thickness ranged from 140 to 160  m. Microstructural studies of the AZ91 magnesium alloy were performed. The chemical composition of the WCCoCr powder was investigated. The quality of the bond at the substrate–coating interface was assessed and a microanalysis of the chemical composition of the coating was conducted. The scratch resistance of the AZ91 alloy and the WCCoCr coating was determined. The scratch resistance of the WCCoCr powder-based coating is much higher than the AZ91 alloy, as confirmed by scratch geometry measurements. The scratch width in the coating was almost three times smaller compared to the scratch in the substrate. Observations of the substrate–coating interface in the scratch area indicate no discontinuities. The absence of microcracks and delamination at the transition of the scratch from the substrate to the coating indicates good adhesion. On the basis of the study, it was found that there was great potential to use the WCCoCr powder coating to improve the abrasion resistance of castings made from the AZ91 alloy.
评估通过涂层提高 AZ91 合金抗划伤性的可能性
本文介绍了使用空气等离子喷涂(APS)方法涂覆 WCCoCr 涂层以提高 AZ91 镁合金抗划伤性的可能性。涂层厚度范围为 140 至 160  m。对 AZ91 镁合金进行了微观结构研究。研究了 WCCoCr 粉末的化学成分。评估了基体-涂层界面的结合质量,并对涂层的化学成分进行了微观分析。测定了 AZ91 合金和 WCCoCr 涂层的抗划伤性。划痕几何测量结果证实,WCCoCr 粉末涂层的抗划痕能力远远高于 AZ91 合金。涂层上的划痕宽度几乎是基体上划痕的三倍。对划痕区域的基体-涂层界面进行的观察表明,划痕区域没有出现不连续性。从基材到涂层的划痕过渡处没有微裂缝和分层,这表明附着力良好。研究发现,使用 WCCoCr 粉末涂层提高 AZ91 合金铸件的耐磨性具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Foundry Engineering
Archives of Foundry Engineering METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.10
自引率
16.70%
发文量
0
期刊介绍: Thematic scope includes scientific issues of foundry industry: Theoretical Aspects of Casting Processes, Innovative Foundry Technologies and Materials, Foundry Processes Computer Aiding, Mechanization, Automation and Robotics in Foundry, Transport Systems in Foundry, Castings Quality Management, Environmental Protection. Why subscribe and read
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信