Nonlinear random extrapolation estimates of \(\pi\) under Dirichlet distributions

Shasha Wang, Zecheng Li, Wen-Qing Xu
{"title":"Nonlinear random extrapolation estimates of \\(\\pi\\) under Dirichlet distributions","authors":"Shasha Wang, Zecheng Li, Wen-Qing Xu","doi":"10.33993/jnaat522-1360","DOIUrl":null,"url":null,"abstract":"We construct optimal nonlinear extrapolation estimates of \\(\\pi\\) based on random cyclic polygons generated from symmetric Dirichlet distributions. While the semiperimeter \\( S_n \\) and the area \\( A_n \\) of such random inscribed polygons and the semiperimeter (and area) \\( S_n' \\) of the corresponding random circumscribing polygons are known to converge to \\( \\pi \\) w.p.\\(1\\) and their distributions are also asymptotically normal as \\( n \\to \\infty \\), we study in this paper nonlinear extrapolations of the forms \\( \\mathcal{W}_n = S_n^{\\alpha} A_n^{\\beta} S_n'^{\\, \\gamma} \\) and \\( \\mathcal{W}_n (p) = ( \\alpha S_n^p + \\beta A_n^p + \\gamma S_n'^{\\, p} )^{1/p} \\) where \\( \\alpha + \\beta + \\gamma = 1 \\) and \\( p \\neq 0 \\). By deriving probabilistic asymptotic expansions with carefully controlled error estimates, we show that \\( \\mathcal{W}_n \\) and \\( \\mathcal{W}_n (p) \\) also converge to \\( \\pi \\) w.p.\\(1\\) and are asymptotically normal. Furthermore, to minimize the approximation error associated with \\( \\mathcal{W}_n \\) and \\( \\mathcal{W}_n (p) \\), the parameters must satisfy the optimality condition \\( \\alpha + 4 \\beta - 2 \\gamma = 0 \\). Our results generalize previous work on nonlinear extrapolations of \\( \\pi \\) which employ inscribed polygons only and the vertices are also assumed to be independently and uniformly distributed on the unit circle.","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat522-1360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We construct optimal nonlinear extrapolation estimates of \(\pi\) based on random cyclic polygons generated from symmetric Dirichlet distributions. While the semiperimeter \( S_n \) and the area \( A_n \) of such random inscribed polygons and the semiperimeter (and area) \( S_n' \) of the corresponding random circumscribing polygons are known to converge to \( \pi \) w.p.\(1\) and their distributions are also asymptotically normal as \( n \to \infty \), we study in this paper nonlinear extrapolations of the forms \( \mathcal{W}_n = S_n^{\alpha} A_n^{\beta} S_n'^{\, \gamma} \) and \( \mathcal{W}_n (p) = ( \alpha S_n^p + \beta A_n^p + \gamma S_n'^{\, p} )^{1/p} \) where \( \alpha + \beta + \gamma = 1 \) and \( p \neq 0 \). By deriving probabilistic asymptotic expansions with carefully controlled error estimates, we show that \( \mathcal{W}_n \) and \( \mathcal{W}_n (p) \) also converge to \( \pi \) w.p.\(1\) and are asymptotically normal. Furthermore, to minimize the approximation error associated with \( \mathcal{W}_n \) and \( \mathcal{W}_n (p) \), the parameters must satisfy the optimality condition \( \alpha + 4 \beta - 2 \gamma = 0 \). Our results generalize previous work on nonlinear extrapolations of \( \pi \) which employ inscribed polygons only and the vertices are also assumed to be independently and uniformly distributed on the unit circle.
迪里希勒分布下的(\pi\)非线性随机外推法估计值
我们基于由对称德里克利特分布生成的随机循环多边形,构建了 \(\pi\) 的最优非线性外推估计值。众所周知,这种随机内切多边形的半径(S_n)和面积(A_n)以及相应的随机外切多边形的半径(和面积)会收敛于(\\pi)w.p.\(1),并且它们的分布也是渐近正态的(\( n \to \infty \)),我们在本文中研究了形式为 \( \mathcal{W}_n = S_n^\{alpha} A_n^{\beta} S_n'^{、\)和( \mathcal{W}_n (p) = ( \alpha S_n^p + \beta A_n^p + \gamma S_n'^{\, p} )^{1/p}\其中 \( α + β + \gamma = 1 \)和 \( p \neq 0 \)。通过推导概率渐近展开和仔细控制的误差估计,我们证明了 ( ( \mathcal{W}_n \) 和 ( ( \mathcal{W}_n (p) \) 也收敛于 ( ( \pi \) w.p.\(1\) 并且是渐近正态的。此外,为了最小化与 ( (mathcal{W}_n)和 ( (mathcal{W}_n(p))相关的近似误差,参数必须满足最优条件 ( (alpha + 4 \beta - 2 \gamma = 0 \)。我们的结果概括了之前关于 \( \pi \)的非线性外推的工作,这些工作只使用了内切多边形,而且顶点也被假定为独立且均匀地分布在单位圆上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信