Local convergence analysis of frozen Steffensen-type methods under generalized conditions

I. Argyros, S. George
{"title":"Local convergence analysis of frozen Steffensen-type methods under generalized conditions","authors":"I. Argyros, S. George","doi":"10.33993/jnaat522-1160","DOIUrl":null,"url":null,"abstract":"The goal in this study is to present a unified local convergence analysis of frozen Steffensen-type methods under generalized Lipschitz-type conditions for Banach space valued operators. We also use our new idea of restricted convergence domains, where we find a more precise location, where the iterates lie leading to at least as tight majorizing functions. Consequently, the new convergence criteria are weaker than in earlier works resulting to the expansion of the applicability of these methods. The conditions do not necessarily imply the differentiability of the operator involved. This way our method is suitable for solving equations and systems of equations.","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"30 52","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat522-1160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The goal in this study is to present a unified local convergence analysis of frozen Steffensen-type methods under generalized Lipschitz-type conditions for Banach space valued operators. We also use our new idea of restricted convergence domains, where we find a more precise location, where the iterates lie leading to at least as tight majorizing functions. Consequently, the new convergence criteria are weaker than in earlier works resulting to the expansion of the applicability of these methods. The conditions do not necessarily imply the differentiability of the operator involved. This way our method is suitable for solving equations and systems of equations.
广义条件下冻结斯蒂芬森型方法的局部收敛分析
本研究的目标是在巴拿赫空间有值算子的广义 Lipschitz 类型条件下,对冻结的 Steffensen 类型方法进行统一的局部收敛分析。我们还使用了限制收敛域这一新概念,在这里我们找到了一个更精确的位置,在这个位置上的迭代至少会导致同样紧密的大化函数。因此,新的收敛标准比以前的工作要弱,从而扩大了这些方法的适用范围。这些条件并不一定意味着相关算子的可微分性。因此,我们的方法适用于方程和方程组的求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信