ImageNet classification with Raspberry Pis: federated learning algorithms of local classifiers

IF 2.5 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Thanh-Nghi Do, Minh-Thu Tran-Nguyen
{"title":"ImageNet classification with Raspberry Pis: federated learning algorithms of local classifiers","authors":"Thanh-Nghi Do, Minh-Thu Tran-Nguyen","doi":"10.1108/ijwis-03-2023-0057","DOIUrl":null,"url":null,"abstract":"Purpose This study aims to propose novel edge device-tailored federated learning algorithms of local classifiers (stochastic gradient descent, support vector machines), namely, FL-lSGD and FL-lSVM. These algorithms are designed to address the challenge of large-scale ImageNet classification. Design/methodology/approach The authors’ FL-lSGD and FL-lSVM trains in a parallel and incremental manner to build an ensemble local classifier on Raspberry Pis without requiring data exchange. The algorithms load small data blocks of the local training subset stored on the Raspberry Pi sequentially to train the local classifiers. The data block is split into k partitions using the k-means algorithm, and models are trained in parallel on each data partition to enable local data classification. Findings Empirical test results on the ImageNet data set show that the authors’ FL-lSGD and FL-lSVM algorithms with 4 Raspberry Pis (Quad core Cortex-A72, ARM v8, 64-bit SoC @ 1.5GHz, 4GB RAM) are faster than the state-of-the-art LIBLINEAR algorithm run on a PC (Intel(R) Core i7-4790 CPU, 3.6 GHz, 4 cores, 32GB RAM). Originality/value Efficiently addressing the challenge of large-scale ImageNet classification, the authors’ novel federated learning algorithms of local classifiers have been tailored to work on the Raspberry Pi. These algorithms can handle 1,281,167 images and 1,000 classes effectively.","PeriodicalId":44153,"journal":{"name":"International Journal of Web Information Systems","volume":"29 47","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijwis-03-2023-0057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose This study aims to propose novel edge device-tailored federated learning algorithms of local classifiers (stochastic gradient descent, support vector machines), namely, FL-lSGD and FL-lSVM. These algorithms are designed to address the challenge of large-scale ImageNet classification. Design/methodology/approach The authors’ FL-lSGD and FL-lSVM trains in a parallel and incremental manner to build an ensemble local classifier on Raspberry Pis without requiring data exchange. The algorithms load small data blocks of the local training subset stored on the Raspberry Pi sequentially to train the local classifiers. The data block is split into k partitions using the k-means algorithm, and models are trained in parallel on each data partition to enable local data classification. Findings Empirical test results on the ImageNet data set show that the authors’ FL-lSGD and FL-lSVM algorithms with 4 Raspberry Pis (Quad core Cortex-A72, ARM v8, 64-bit SoC @ 1.5GHz, 4GB RAM) are faster than the state-of-the-art LIBLINEAR algorithm run on a PC (Intel(R) Core i7-4790 CPU, 3.6 GHz, 4 cores, 32GB RAM). Originality/value Efficiently addressing the challenge of large-scale ImageNet classification, the authors’ novel federated learning algorithms of local classifiers have been tailored to work on the Raspberry Pi. These algorithms can handle 1,281,167 images and 1,000 classes effectively.
使用树莓派(Raspberry Pis)进行图像网络分类:本地分类器的联合学习算法
目的 本研究旨在提出新型边缘设备定制的局部分类器(随机梯度下降、支持向量机)联合学习算法,即 FL-lSGD 和 FL-lSVM。这些算法旨在应对大规模 ImageNet 分类的挑战。 设计/方法/途径 作者的 FL-lSGD 和 FL-lSVM 以并行和增量的方式进行训练,在树莓派(Raspberry Pis)上建立一个集合局部分类器,而无需交换数据。这些算法按顺序加载存储在树莓派(Raspberry Pi)上的本地训练子集的小数据块,以训练本地分类器。使用 k-means 算法将数据块分成 k 个分区,并在每个数据分区上并行训练模型,以实现本地数据分类。 结果 在ImageNet数据集上的经验测试结果表明,作者的FL-lSGD和FL-lSVM算法在4台Raspberry Pis(四核Cortex-A72、ARM v8、64位SoC @ 1.5GHz、4GB RAM)上的运行速度快于在PC(Intel(R) Core i7-4790 CPU、3.6GHz、4核、32GB RAM)上运行的最先进的LIBLINEAR算法。 独创性/价值 作者新颖的本地分类器联合学习算法可有效地应对大规模 ImageNet 分类的挑战,该算法经过定制,可在 Raspberry Pi 上运行。这些算法可有效处理 1,281,167 幅图像和 1,000 个类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Web Information Systems
International Journal of Web Information Systems COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
4.60
自引率
0.00%
发文量
19
期刊介绍: The Global Information Infrastructure is a daily reality. In spite of the many applications in all domains of our societies: e-business, e-commerce, e-learning, e-science, and e-government, for instance, and in spite of the tremendous advances by engineers and scientists, the seamless development of Web information systems and services remains a major challenge. The journal examines how current shared vision for the future is one of semantically-rich information and service oriented architecture for global information systems. This vision is at the convergence of progress in technologies such as XML, Web services, RDF, OWL, of multimedia, multimodal, and multilingual information retrieval, and of distributed, mobile and ubiquitous computing. Topicality While the International Journal of Web Information Systems covers a broad range of topics, the journal welcomes papers that provide a perspective on all aspects of Web information systems: Web semantics and Web dynamics, Web mining and searching, Web databases and Web data integration, Web-based commerce and e-business, Web collaboration and distributed computing, Internet computing and networks, performance of Web applications, and Web multimedia services and Web-based education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信