{"title":"Wave energy converter efficiency based on wave transmission and relative capture width performance","authors":"U. Türker, Souhail Boulanoire","doi":"10.1177/14750902231217357","DOIUrl":null,"url":null,"abstract":"A series of quantitative analyses were performed to identify the wave properties and potential, by means of records collected from an offshore buoy in North-West Ireland. Based on the data collected, a series of quantitative analyses was conducted to determine the dominant wind directions and wave properties on an annual basis. In addition, the wave power is computed based on relevant wave heights and periods, and the Pierson-Moskowitz spectral model was used to generate the maximum wave energy spectra for each year. The results show that waves with wave powers of around 100 kW/m were mostly approaching eastward at a rather narrow frequency. In order to compare the relative capture width and the power absorption capacity of three floating structures, the Wave Dragon, Board Net Breakwater, and Cylindrical Floating Breakwater are analyzed. Also outlined is the impact of the transmission coefficient on the effectiveness of wave energy converters (WEC) throughout the energy harvesting process. This was accomplished by fusing information from three distinct field investigations and experimental research with four different wave transmission coefficient models. The results show that as the wave steepness increases, the transmission coefficient decreases and the hydrodynamic performance of wave energy converters increases. Also, it is found that the hydrodynamic efficiency of wave energy converters is higher in summer than in winter, and the Wave Dragon is the most efficient wave energy converter in regard to relative capture width and power absorption.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902231217357","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A series of quantitative analyses were performed to identify the wave properties and potential, by means of records collected from an offshore buoy in North-West Ireland. Based on the data collected, a series of quantitative analyses was conducted to determine the dominant wind directions and wave properties on an annual basis. In addition, the wave power is computed based on relevant wave heights and periods, and the Pierson-Moskowitz spectral model was used to generate the maximum wave energy spectra for each year. The results show that waves with wave powers of around 100 kW/m were mostly approaching eastward at a rather narrow frequency. In order to compare the relative capture width and the power absorption capacity of three floating structures, the Wave Dragon, Board Net Breakwater, and Cylindrical Floating Breakwater are analyzed. Also outlined is the impact of the transmission coefficient on the effectiveness of wave energy converters (WEC) throughout the energy harvesting process. This was accomplished by fusing information from three distinct field investigations and experimental research with four different wave transmission coefficient models. The results show that as the wave steepness increases, the transmission coefficient decreases and the hydrodynamic performance of wave energy converters increases. Also, it is found that the hydrodynamic efficiency of wave energy converters is higher in summer than in winter, and the Wave Dragon is the most efficient wave energy converter in regard to relative capture width and power absorption.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.