Estimating Macronutrient Content of Paddy Soil Based on Near-Infrared Spectroscopy Technology Using Multiple Linear Regression

Q3 Engineering
Jonni Firdaus, Usman Ahmad, W. Budiastra, I. Dewa, Made Subrata
{"title":"Estimating Macronutrient Content of Paddy Soil Based on Near-Infrared Spectroscopy Technology Using Multiple Linear Regression","authors":"Jonni Firdaus, Usman Ahmad, W. Budiastra, I. Dewa, Made Subrata","doi":"10.46604/aiti.2023.12683","DOIUrl":null,"url":null,"abstract":"This study investigates the feasibility of employing near-infrared (NIR) spectroscopy with multiple linear regression (MLR) to estimate macronutrients in paddy soil compared with partial least squares (PLS) and principal component regression (PCR). Seventy-nine soil samples from West Java Province, Indonesia, are subject to conventional nutrient analysis and NIR spectroscopy (1000-2500 nm). The reflectance data undergoes various pretreatment techniques, and MLR models are calibrated using the forward method to achieve correlations exceeding 0.90. The best model calibrations are selected based on high correlation coefficients, determination coefficients, RPD, and low RMSE values. Meanwhile, the comparison of performance MLR is made with the PLS and PCR models. Results indicate that simple MLR models perform less than PLS for all nutrients, better than PCR for nitrogen, and below PCR for phosphorus and potassium. However, MLR reliably estimates soil nitrogen, phosphorus, and potassium content with ratio of performance to deviation (RPD) exceeding 2.0. This study demonstrates the potential of MLR for precise macronutrient estimation in paddy soil.","PeriodicalId":52314,"journal":{"name":"Advances in Technology Innovation","volume":"109 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/aiti.2023.12683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the feasibility of employing near-infrared (NIR) spectroscopy with multiple linear regression (MLR) to estimate macronutrients in paddy soil compared with partial least squares (PLS) and principal component regression (PCR). Seventy-nine soil samples from West Java Province, Indonesia, are subject to conventional nutrient analysis and NIR spectroscopy (1000-2500 nm). The reflectance data undergoes various pretreatment techniques, and MLR models are calibrated using the forward method to achieve correlations exceeding 0.90. The best model calibrations are selected based on high correlation coefficients, determination coefficients, RPD, and low RMSE values. Meanwhile, the comparison of performance MLR is made with the PLS and PCR models. Results indicate that simple MLR models perform less than PLS for all nutrients, better than PCR for nitrogen, and below PCR for phosphorus and potassium. However, MLR reliably estimates soil nitrogen, phosphorus, and potassium content with ratio of performance to deviation (RPD) exceeding 2.0. This study demonstrates the potential of MLR for precise macronutrient estimation in paddy soil.
基于近红外光谱技术的多元线性回归估算水稻土中的宏量营养元素含量
与偏最小二乘法(PLS)和主成分回归法(PCR)相比,本研究探讨了利用近红外光谱与多元线性回归法(MLR)估算稻田土壤中主要营养元素的可行性。对印度尼西亚西爪哇省的 79 个土壤样本进行了传统养分分析和近红外光谱分析(1000-2500 nm)。反射率数据经过各种预处理技术处理,并使用正向法校准 MLR 模型,以实现超过 0.90 的相关性。根据高相关系数、确定系数、RPD 和低 RMSE 值选出最佳模型校准。同时,对 MLR 与 PLS 和 PCR 模型的性能进行了比较。结果表明,简单的 MLR 模型在所有养分方面的性能均低于 PLS 模型,在氮方面优于 PCR 模型,而在磷和钾方面低于 PCR 模型。然而,MLR 能可靠地估算土壤中氮、磷和钾的含量,其性能与偏差比 (RPD) 超过 2.0。这项研究证明了 MLR 在精确估算稻田土壤中宏量养分方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Technology Innovation
Advances in Technology Innovation Energy-Energy Engineering and Power Technology
CiteScore
1.90
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信