Air Pollution in Jakarta, Indonesia Under Spotlight: An AI-Assisted Semi-Supervised Learning Approach

Harun Al Azies
{"title":"Air Pollution in Jakarta, Indonesia Under Spotlight: An AI-Assisted Semi-Supervised Learning Approach","authors":"Harun Al Azies","doi":"10.34123/icdsos.v2023i1.348","DOIUrl":null,"url":null,"abstract":"The air quality in the Jakarta area is examined in this study using artificial intelligence (AI) to assist a semi-supervised learning technique. The clustering approach is used in this article to separate air pollution into three main categories moderate, low, and high levels. This clustering helps identify shared characteristics among measures like PM10, SO2, NO2, and others, even when air quality labels are not always accessible. Using the Random Forest method, the air quality will be categorized in this experiment with an accuracy rate of 93%. Additionally, the results of variable significance analysis are examined on this article to identify the variables with the biggest effects on air quality, notably PM10, SO2, and NO2. This study demonstrates the enormous potential of applying machine learning techniques, particularly semi-supervised learning approaches, to assist sustainable environmental regulations while also monitoring and enhancing Jakarta's air quality. We describe the experimental procedures, the findings, and the implications of our research for comprehending and addressing urban air pollution in this article","PeriodicalId":151043,"journal":{"name":"Proceedings of The International Conference on Data Science and Official Statistics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The International Conference on Data Science and Official Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34123/icdsos.v2023i1.348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The air quality in the Jakarta area is examined in this study using artificial intelligence (AI) to assist a semi-supervised learning technique. The clustering approach is used in this article to separate air pollution into three main categories moderate, low, and high levels. This clustering helps identify shared characteristics among measures like PM10, SO2, NO2, and others, even when air quality labels are not always accessible. Using the Random Forest method, the air quality will be categorized in this experiment with an accuracy rate of 93%. Additionally, the results of variable significance analysis are examined on this article to identify the variables with the biggest effects on air quality, notably PM10, SO2, and NO2. This study demonstrates the enormous potential of applying machine learning techniques, particularly semi-supervised learning approaches, to assist sustainable environmental regulations while also monitoring and enhancing Jakarta's air quality. We describe the experimental procedures, the findings, and the implications of our research for comprehending and addressing urban air pollution in this article
聚焦印度尼西亚雅加达的空气污染:人工智能辅助半监督学习法
本研究利用人工智能(AI)辅助半监督学习技术对雅加达地区的空气质量进行了检测。本文采用聚类方法将空气污染分为中度、低度和高度三大类。这种聚类方法有助于识别 PM10、二氧化硫、二氧化氮等测量指标之间的共同特征,即使在空气质量标签并不总能获得的情况下也是如此。在本实验中,使用随机森林方法对空气质量进行分类的准确率为 93%。此外,本文还研究了变量显著性分析的结果,以确定对空气质量影响最大的变量,尤其是 PM10、二氧化硫和二氧化氮。这项研究表明,应用机器学习技术(尤其是半监督学习方法)协助制定可持续的环境法规,同时监测和改善雅加达的空气质量,具有巨大的潜力。我们将在本文中介绍实验过程、研究结果以及我们的研究对理解和解决城市空气污染问题的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信