Well-posedness criteria for one family of boundary value problems

IF 0.7 Q2 MATHEMATICS
P. B. Abdimanapova, S. Temesheva
{"title":"Well-posedness criteria for one family of boundary value problems","authors":"P. B. Abdimanapova, S. Temesheva","doi":"10.31489/2023m4/5-20","DOIUrl":null,"url":null,"abstract":"This paper considers a family of linear two-point boundary value problems for systems of ordinary differential equations. The questions of existence of its solutions are investigated and methods of finding approximate solutions are proposed. Sufficient conditions for the existence of a family of linear two-point boundary value problems for systems of ordinary differential equations are established. The uniqueness of the solution of the problem under consideration is proved. Algorithms for finding an approximate solution based on modified of the algorithms of the D.S. Dzhumabaev parameterization method are proposed and their convergence is proved. According to the scheme of the parameterization method, the problem is transformed into an equivalent family of multipoint boundary value problems for systems of differential equations. By introducing new unknown functions we reduce the problem under study to an equivalent problem, a Volterra integral equation of the second kind. Sufficient conditions of feasibility and convergence of the proposed algorithm are established, which also ensure the existence of a unique solution of the family of boundary value problems with parameters. Necessary and sufficient conditions for the well-posedness of the family of linear boundary value problems for the system of ordinary differential equations are obtained.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":"75 1‐2","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2023m4/5-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers a family of linear two-point boundary value problems for systems of ordinary differential equations. The questions of existence of its solutions are investigated and methods of finding approximate solutions are proposed. Sufficient conditions for the existence of a family of linear two-point boundary value problems for systems of ordinary differential equations are established. The uniqueness of the solution of the problem under consideration is proved. Algorithms for finding an approximate solution based on modified of the algorithms of the D.S. Dzhumabaev parameterization method are proposed and their convergence is proved. According to the scheme of the parameterization method, the problem is transformed into an equivalent family of multipoint boundary value problems for systems of differential equations. By introducing new unknown functions we reduce the problem under study to an equivalent problem, a Volterra integral equation of the second kind. Sufficient conditions of feasibility and convergence of the proposed algorithm are established, which also ensure the existence of a unique solution of the family of boundary value problems with parameters. Necessary and sufficient conditions for the well-posedness of the family of linear boundary value problems for the system of ordinary differential equations are obtained.
一族边界值问题的妥善处理标准
本文研究了常微分方程系统的线性两点边界值问题族。研究了其解的存在性问题,并提出了寻找近似解的方法。建立了常微分方程系线性两点边界值问题族存在的充分条件。证明了所考虑问题解的唯一性。提出了基于 D.S. Dzhumabaev 参数化方法算法修正的近似解求解算法,并证明了其收敛性。根据参数化方法的方案,问题被转化为微分方程系统的多点边界值问题等价族。通过引入新的未知函数,我们将所研究的问题简化为一个等价问题,即 Volterra 第二类积分方程。建立了所提算法可行性和收敛性的充分条件,这也确保了带参数边界值问题族唯一解的存在。获得了常微分方程系统线性边界值问题族良好求解的必要条件和充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信