Implementation of summation theorems of Andrews and Gessel-Stanton

IF 0.7 Q2 MATHEMATICS
Mohd. Idris Qureshi, Tafaz Ul, Rahman Shah
{"title":"Implementation of summation theorems of Andrews and Gessel-Stanton","authors":"Mohd. Idris Qureshi, Tafaz Ul, Rahman Shah","doi":"10.31489/2023m4/95-104","DOIUrl":null,"url":null,"abstract":"Generalized hypergeometric functions and their natural generalizations in one and several variables appear in many mathematical problems and their applications. Solving partial differential equations encountered in many applied problems of mathematics physics is expressed in terms of such generalized hypergeometric functions. In particular, the Srivastava-Daoust double hypergeometric function (S-D function) has proved its practical utility in representing solutions to a wide range of problems in pure and applied mathematics. In this paper, we introduce two general double-series identities involving bounded sequences of arbitrary complex numbers employing the finite summation theorems of Gessel-Stanton and Andrews for terminating 3F2 hypergeometric series with arguments 3/4 and 4/3, respectively. Using these double-series identities, we establish two reduction formulas for the (S-D function) with arguments z, 3z/4 and z, −4z/3 expressed in terms of two generalized hypergeometric function of arguments proportional to z3 and −z3 respectively. All the results mentioned in the paper are verified numerically using Mathematica Program.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":"74 s315","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2023m4/95-104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Generalized hypergeometric functions and their natural generalizations in one and several variables appear in many mathematical problems and their applications. Solving partial differential equations encountered in many applied problems of mathematics physics is expressed in terms of such generalized hypergeometric functions. In particular, the Srivastava-Daoust double hypergeometric function (S-D function) has proved its practical utility in representing solutions to a wide range of problems in pure and applied mathematics. In this paper, we introduce two general double-series identities involving bounded sequences of arbitrary complex numbers employing the finite summation theorems of Gessel-Stanton and Andrews for terminating 3F2 hypergeometric series with arguments 3/4 and 4/3, respectively. Using these double-series identities, we establish two reduction formulas for the (S-D function) with arguments z, 3z/4 and z, −4z/3 expressed in terms of two generalized hypergeometric function of arguments proportional to z3 and −z3 respectively. All the results mentioned in the paper are verified numerically using Mathematica Program.
安德鲁斯和盖塞尔-斯坦顿求和定理的实现
广义超几何函数及其在一变量和多变量中的自然广义出现在许多数学问题及其应用中。许多数学物理应用问题中遇到的偏微分方程的求解都是用这种广义超几何函数来表示的。特别是 Srivastava-Daoust 双超几何函数(S-D 函数),它在表示纯数学和应用数学中广泛问题的解法方面已被证明具有实际效用。在本文中,我们介绍了两个涉及任意复数有界序列的通用双序列同值定理,它们分别采用了盖塞尔-斯坦顿和安德鲁斯的有限求和定理,用于参数为 3/4 和 4/3 的终结 3F2 双曲数列。利用这些双序列等式,我们建立了参数为 z, 3z/4 和 z, -4z/3 的(S-D 函数)的两个还原公式,分别用两个参数与 z3 和 -z3 成比例的广义超几何函数表示。文中提到的所有结果都通过 Mathematica 程序进行了数值验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信