Curating Multimodal Satellite Imagery for Precision Agriculture Datasets with Google Earth Engine

Bagus Setyawan Wijaya, Rinaldi Munir, N. P. Utama
{"title":"Curating Multimodal Satellite Imagery for Precision Agriculture Datasets with Google Earth Engine","authors":"Bagus Setyawan Wijaya, Rinaldi Munir, N. P. Utama","doi":"10.34123/icdsos.v2023i1.399","DOIUrl":null,"url":null,"abstract":"In the era of modern agriculture, satellite imagery has been widely used to monitor crops, one of which is paddy. This paper tries to describe the vegetation indices, climate, and soil index features related to paddy plants and curates a collection of satellite imagery on the Google Earth Engine (GEE). This paper reveals how GEE can be used to collect and process multimodal satellite imagery to form a precision agriculture dataset. The objective of this study is to establish a comprehensive precision agriculture dataset by leveraging multimodal satellite imagery to monitor paddy crops. The data collected as a dataset originates from 306 locations in Karawang Regency, Indonesia, during the 2019-2020 period. In the first step, we identify the relevant features essential for paddy crop analysis. Subsequently, we carefully select image collections within GEE based on these features. Afterward, we perform data acquisition and necessary preprocessing through the Google Colab environment. The results showed that satellite imagery from Sentinel-2 outperforms Landsat 8 in terms of spatial and temporal resolution. Apart from that, the generated dataset successfully captures the growth patterns of paddy plants.","PeriodicalId":151043,"journal":{"name":"Proceedings of The International Conference on Data Science and Official Statistics","volume":"138 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The International Conference on Data Science and Official Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34123/icdsos.v2023i1.399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the era of modern agriculture, satellite imagery has been widely used to monitor crops, one of which is paddy. This paper tries to describe the vegetation indices, climate, and soil index features related to paddy plants and curates a collection of satellite imagery on the Google Earth Engine (GEE). This paper reveals how GEE can be used to collect and process multimodal satellite imagery to form a precision agriculture dataset. The objective of this study is to establish a comprehensive precision agriculture dataset by leveraging multimodal satellite imagery to monitor paddy crops. The data collected as a dataset originates from 306 locations in Karawang Regency, Indonesia, during the 2019-2020 period. In the first step, we identify the relevant features essential for paddy crop analysis. Subsequently, we carefully select image collections within GEE based on these features. Afterward, we perform data acquisition and necessary preprocessing through the Google Colab environment. The results showed that satellite imagery from Sentinel-2 outperforms Landsat 8 in terms of spatial and temporal resolution. Apart from that, the generated dataset successfully captures the growth patterns of paddy plants.
利用谷歌地球引擎为精准农业数据集整理多模态卫星图像
在现代农业时代,卫星图像被广泛用于监测农作物,水稻就是其中之一。本文试图描述与水稻植物相关的植被指数、气候和土壤指数特征,并在谷歌地球引擎(GEE)上收集卫星图像。本文揭示了如何利用 GEE 收集和处理多模态卫星图像,以形成精准农业数据集。本研究的目的是利用多模态卫星图像监测水稻作物,从而建立一个全面的精准农业数据集。作为数据集收集的数据来自 2019-2020 年期间印度尼西亚卡拉旺地区的 306 个地点。首先,我们确定了对水稻作物分析至关重要的相关特征。随后,我们根据这些特征在 GEE 中仔细选择图像集合。之后,我们通过 Google Colab 环境进行数据采集和必要的预处理。结果表明,Sentinel-2 的卫星图像在空间和时间分辨率方面均优于 Landsat 8。此外,生成的数据集还成功捕捉到了水稻植株的生长模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信