{"title":"A Novel Planning and Tracking Approach for Mobile Robotic Arm in Obstacle Environment","authors":"Jiabin Yu, Jiguang Wu, Jiping Xu, Xiaoyi Wang, Xiaoyu Cui, Bingyi Wang, Zhiyao Zhao","doi":"10.3390/machines12010019","DOIUrl":null,"url":null,"abstract":"In this study, a novel planning and tracking approach is proposed for a mobile robotic arm to grab objects in an obstacle environment. First, we developed an improved APF-RRT* algorithm for the motion planning of a mobile robotic arm. This algorithm optimizes the selection of random tree nodes and smoothing the path. The invalid branch and the planning time are decreased by the artificial potential field, which is determined by the specific characteristics of obstacles. Second, a Fuzzy-DDPG-PID controller is established for the mobile robotic arm to track the planned path. The parameters of the PID controller are set using the new DDPG algorithm, which integrated FNN. The response speed and control accuracy of the controller are enhanced. The error and time of tracking of the mobile robotic arm are decreased. The experiment results verify that the proposed approach has good planning and tracking results, high speed and accuracy, and strong robustness. To avoid the occasionality of the experiments and fully illustrate the effectiveness and generality of the proposed approach, the experiments are repeated multiple times. The experiment results demonstrate the effectiveness of the proposed approach. It outperforms existing planning and tracking approaches.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"108 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines12010019","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a novel planning and tracking approach is proposed for a mobile robotic arm to grab objects in an obstacle environment. First, we developed an improved APF-RRT* algorithm for the motion planning of a mobile robotic arm. This algorithm optimizes the selection of random tree nodes and smoothing the path. The invalid branch and the planning time are decreased by the artificial potential field, which is determined by the specific characteristics of obstacles. Second, a Fuzzy-DDPG-PID controller is established for the mobile robotic arm to track the planned path. The parameters of the PID controller are set using the new DDPG algorithm, which integrated FNN. The response speed and control accuracy of the controller are enhanced. The error and time of tracking of the mobile robotic arm are decreased. The experiment results verify that the proposed approach has good planning and tracking results, high speed and accuracy, and strong robustness. To avoid the occasionality of the experiments and fully illustrate the effectiveness and generality of the proposed approach, the experiments are repeated multiple times. The experiment results demonstrate the effectiveness of the proposed approach. It outperforms existing planning and tracking approaches.
期刊介绍:
Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.