Discourse “Ndasmu” on twetter after the 2024 Presidential Election Debate in Indonesia Topic Modeling and Sentiment Analysis

Hastuti Hastuti, Harry Fajar Maulana, Wandi Wandi
{"title":"Discourse “Ndasmu” on twetter after the 2024 Presidential Election Debate in Indonesia Topic Modeling and Sentiment Analysis","authors":"Hastuti Hastuti, Harry Fajar Maulana, Wandi Wandi","doi":"10.30863/palakka.v4i2.5229","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to examine the conversation that transpired on Twitter following the Indonesia 2024 presidential election debate, with particular attention on the phrase \"Ndasmu.\" To better comprehend the speech patterns and attitudes that surface in online interactions, this research use topic modeling and sentiment analysis. The following Twitter data collection steps are part of this research methodology: To retrieve relevant tweets, use the Tweepy library to access the Twitter API. Access can only be obtained using a Twitter API key. Pre-processing Text: Eliminating superfluous characters, links, and mentions from the text data. Tokenizing text means breaking it up into individual words or phrases. eliminating stop words. Topic Modeling: Non-negative Matrix Factorization (NMF) or Latent Dirichlet Allocation (LDA) are two methods used for topic modeling. Two well-liked Python packages for topic modeling are Scikit-learn and Gensim. Sentiment analysis can be done with TextBlob or NLTK. While TextBlob makes things easier, NLTK offers more customization options. Visualization: Producing word clouds for subjects and sentiment distribution, among other visual representations of the data, requires the use of tools like Matplotlib or Seaborn. It is anticipated that the study's findings would provide light on the prevailing themes in the \"Ndasmu\" discourse and the attitudes that accompanied the presidential debates. These findings can help us comprehend the dynamics of public opinion and how individuals react to important political occasions like debates for the presidential nomination.","PeriodicalId":446339,"journal":{"name":"Palakka : Media and Islamic Communication","volume":"224 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Palakka : Media and Islamic Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30863/palakka.v4i2.5229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study is to examine the conversation that transpired on Twitter following the Indonesia 2024 presidential election debate, with particular attention on the phrase "Ndasmu." To better comprehend the speech patterns and attitudes that surface in online interactions, this research use topic modeling and sentiment analysis. The following Twitter data collection steps are part of this research methodology: To retrieve relevant tweets, use the Tweepy library to access the Twitter API. Access can only be obtained using a Twitter API key. Pre-processing Text: Eliminating superfluous characters, links, and mentions from the text data. Tokenizing text means breaking it up into individual words or phrases. eliminating stop words. Topic Modeling: Non-negative Matrix Factorization (NMF) or Latent Dirichlet Allocation (LDA) are two methods used for topic modeling. Two well-liked Python packages for topic modeling are Scikit-learn and Gensim. Sentiment analysis can be done with TextBlob or NLTK. While TextBlob makes things easier, NLTK offers more customization options. Visualization: Producing word clouds for subjects and sentiment distribution, among other visual representations of the data, requires the use of tools like Matplotlib or Seaborn. It is anticipated that the study's findings would provide light on the prevailing themes in the "Ndasmu" discourse and the attitudes that accompanied the presidential debates. These findings can help us comprehend the dynamics of public opinion and how individuals react to important political occasions like debates for the presidential nomination.
印度尼西亚 2024 年总统大选辩论后关于 twetter 的 "Ndasmu "话语 主题建模和情感分析
本研究旨在探讨印尼 2024 年总统大选辩论后在 Twitter 上发生的对话,尤其关注 "Ndasmu "这一短语。为了更好地理解在线互动中出现的言论模式和态度,本研究使用了话题建模和情感分析。以下推特数据收集步骤是本研究方法的一部分:要检索相关推文,请使用 Tweepy 库访问 Twitter API。只有使用 Twitter API 密钥才能访问。预处理文本:消除文本数据中多余的字符、链接和提及。标记化文本是指将文本分割成单个词或短语,消除停顿词。主题建模:非负矩阵因式分解(NMF)或潜在德里希特分配(LDA)是用于主题建模的两种方法。Scikit-learn 和 Gensim 是两个常用的 Python 主题建模软件包。情感分析可以使用 TextBlob 或 NLTK。TextBlob 让事情变得更简单,而 NLTK 则提供了更多自定义选项。可视化:制作主题和情感分布的词云,以及其他数据的可视化表示,需要使用 Matplotlib 或 Seaborn 等工具。预计研究结果将有助于我们了解 "Ndasmu "话语中的主流主题以及总统辩论中的态度。这些发现有助于我们理解公众舆论的动态,以及个人对总统提名辩论等重要政治场合的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信