Exploration of the cropping pattern based on the irrigation water–energy–food and carbon emission nexus

IF 1.6 4区 农林科学 Q2 AGRONOMY
Jeet B. Chand, Sanjeeb Bimali
{"title":"Exploration of the cropping pattern based on the irrigation water–energy–food and carbon emission nexus","authors":"Jeet B. Chand,&nbsp;Sanjeeb Bimali","doi":"10.1002/ird.2914","DOIUrl":null,"url":null,"abstract":"<p>This study examined the existing cropping patterns, yield, irrigation water and energy use and carbon emission responses to explore the best cropping pattern based on the optimum water–energy–food and carbon emission nexus. The study consisted of field visits, questionnaire surveys among 510 farmers, 10 key informant interviews, one focused group discussion and subsequent analysis of collected data. The result of the research indicated that the best existing cropping pattern was rice–wheat–no crops with a net benefit of USD 491 ha⁻¹, benefit–cost ratio: 1.33, water use: 8830 m<sup>3</sup> ha⁻¹, energy use: 43 GJ ha⁻¹ and carbon emission: 2420 kg CO<sub>2</sub>-eq ha⁻¹. This study found spring rice to be the most appropriate agricultural commodity in the third season of the crop calendar and rice–wheat–spring rice, as the recommended cropping pattern in the selected area based on maximum production: 13.3 t ha⁻¹, the largest net income: USD 668 ha⁻¹, the highest benefit-cost ratio: 1.27 and the least use of energy 802 GJ ha⁻¹ with release of</p><p>3840 kg CO<sub>2</sub>-eq ha⁻¹ of carbon. After applying the recommended cropping pattern of this study, there will be significant growth in the benefit per unit use of water and energy and a substantial reduction in carbon emission per tonne of food production.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 3","pages":"944-960"},"PeriodicalIF":1.6000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irrigation and Drainage","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ird.2914","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

This study examined the existing cropping patterns, yield, irrigation water and energy use and carbon emission responses to explore the best cropping pattern based on the optimum water–energy–food and carbon emission nexus. The study consisted of field visits, questionnaire surveys among 510 farmers, 10 key informant interviews, one focused group discussion and subsequent analysis of collected data. The result of the research indicated that the best existing cropping pattern was rice–wheat–no crops with a net benefit of USD 491 ha⁻¹, benefit–cost ratio: 1.33, water use: 8830 m3 ha⁻¹, energy use: 43 GJ ha⁻¹ and carbon emission: 2420 kg CO2-eq ha⁻¹. This study found spring rice to be the most appropriate agricultural commodity in the third season of the crop calendar and rice–wheat–spring rice, as the recommended cropping pattern in the selected area based on maximum production: 13.3 t ha⁻¹, the largest net income: USD 668 ha⁻¹, the highest benefit-cost ratio: 1.27 and the least use of energy 802 GJ ha⁻¹ with release of

3840 kg CO2-eq ha⁻¹ of carbon. After applying the recommended cropping pattern of this study, there will be significant growth in the benefit per unit use of water and energy and a substantial reduction in carbon emission per tonne of food production.

基于灌溉水-能源-粮食与碳排放关系的种植模式探索
这项研究考察了现有的种植模式、产量、灌溉用水和能源使用以及碳排放反应,以探索基于水、能源、粮食和碳排放之间最佳关系的最佳种植模式。这项研究包括实地考察、对 510 位农民进行问卷调查、10 次关键信息提供者访谈、一次重点小组讨论以及对收集到的数据进行后续分析。研究结果表明,现有的最佳种植模式是水稻-小麦-无作物,净收益为 491 美元/公顷-¹,收益成本比为 1.33,用水量为 8830 立方米/公顷-¹,净收益为 491 美元/公顷-¹:用水量:8830 立方米/公顷-¹,耗能43 GJ ha-¹,碳排放量:2420 kg CO2-eq ha-¹。这项研究发现,春稻是作物日历第三季最合适的农产品,而水稻-小麦-春稻则是所选地区根据最高产量推荐的种植模式:13.3 吨/公顷-¹,最大净收入收益成本比最高:1.27,能源消耗最少:802 千兆焦/公顷,碳排放量最少:3840 千克二氧化碳当量/公顷。采用本研究推荐的种植模式后,单位水和能源使用量的收益将显著增加,每吨粮食生产的碳排放量也将大幅减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Irrigation and Drainage
Irrigation and Drainage 农林科学-农艺学
CiteScore
3.40
自引率
10.50%
发文量
107
审稿时长
3 months
期刊介绍: Human intervention in the control of water for sustainable agricultural development involves the application of technology and management approaches to: (i) provide the appropriate quantities of water when it is needed by the crops, (ii) prevent salinisation and water-logging of the root zone, (iii) protect land from flooding, and (iv) maximise the beneficial use of water by appropriate allocation, conservation and reuse. All this has to be achieved within a framework of economic, social and environmental constraints. The Journal, therefore, covers a wide range of subjects, advancement in which, through high quality papers in the Journal, will make a significant contribution to the enormous task of satisfying the needs of the world’s ever-increasing population. The Journal also publishes book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信