{"title":"Attitude Determination of Photovoltaic Device by Means of Differential Absorption Imaging","authors":"K. Asaba, Tomoyuki Miyamoto","doi":"10.3390/photonics11010032","DOIUrl":null,"url":null,"abstract":"Future wireless power transmission will cover power levels up to kilowatts or more and transmission distances up to the scale of kilometers. With its narrow beam divergence angle, optical wireless power transmission (OWPT) is a promising candidate for such system implementations. In the operation of OWPT, it is necessary to estimate the position, direction (azimuth, elevation), and attitude of the target photovoltaic device before the power supply. The authors have proposed the detection of targets using differential absorption imaging and positioning with a combination of stereo imagery. In the positioning by stereo imagery, a condition regarding the consistency of the left and right images can be defined. This corresponds to the certain value of the exposure time of the image sensor, and this depends on the target’s attitude angle. In this paper, we discuss target attitude estimation using this minimum exposure time at which the integrity measure converges. A physical model was derived under general conditions of target position and experimental configuration. Target attitudes were estimated within an error range of 10 to 15 degrees in approximately 60 degrees range. On the other hand, there is an attitude estimation method based on the apparent size of the target. When using this method to estimate the attitude angle, errors are significantly large for specular and diffuse mixed targets like the PV. The method proposed in this paper is a robust attitude estimation method for the photovoltaic device in OWPT.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":" 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11010032","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Future wireless power transmission will cover power levels up to kilowatts or more and transmission distances up to the scale of kilometers. With its narrow beam divergence angle, optical wireless power transmission (OWPT) is a promising candidate for such system implementations. In the operation of OWPT, it is necessary to estimate the position, direction (azimuth, elevation), and attitude of the target photovoltaic device before the power supply. The authors have proposed the detection of targets using differential absorption imaging and positioning with a combination of stereo imagery. In the positioning by stereo imagery, a condition regarding the consistency of the left and right images can be defined. This corresponds to the certain value of the exposure time of the image sensor, and this depends on the target’s attitude angle. In this paper, we discuss target attitude estimation using this minimum exposure time at which the integrity measure converges. A physical model was derived under general conditions of target position and experimental configuration. Target attitudes were estimated within an error range of 10 to 15 degrees in approximately 60 degrees range. On the other hand, there is an attitude estimation method based on the apparent size of the target. When using this method to estimate the attitude angle, errors are significantly large for specular and diffuse mixed targets like the PV. The method proposed in this paper is a robust attitude estimation method for the photovoltaic device in OWPT.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.